RC Joystick NG* Manual

(last update: 1 Oct 2006)

GENERAL DESCRIPTION

RC Joystick NG? is a little project to build an interface to connect a Radio Controller
Trasmitter to your computer via USB port. You can connect the radio to the interface in two
way: PPM/PCM mode: use the PPM or PCM output (buddy box connector); ADC mode:
uses a direct connection to radio potentiometers/switches doing an Analog to Digital
Conversion. PPM support should allow to connect any radio equipped with PPM output.
PCM support is limited to Sanwa/Airtronics PCM1/2 and Futaba PCM 1024. Note however
that as far as we know at this time any PCM radio can also send PPM.

i L i

The SMD version of the interface

e

With this interface your favourite RC or flight simulator will see the RC TX as two
traditional joysticks (instead of one as in RC Joystick / RC Joystick NG), now with 8 analog
axes (up to about 5000 points resolution each) and 8 buttons each for a total of 16 analog
axes and 16 buttons; 32 joystick controls can be assigned to a maximum of 12 radio
channels: normal radios have less than 12 channels and PPM and PCM modulations
doesn't allow more than 8/10 channels at the moment; however all these assignable
joystick controls should gives better assignment versatility.... These assignments are
stored inside PIC (non-volatile) eeprom and configurable by user directly via USB using a
little utility written in C and LibUSB-Win32 filter driver (Windows) or libusb (Linux,
FreeBSD, NetBSD, OpenBSD, Darwin/MacOSX) or also by directly editing the pic eeprom
data. This description refers to new 8 axis per joystick version; however for those who
prefer the old 4 axis per joystick version it is still available in the software package (you
can find there both compiled binaries and the source is compileable in both versions by
just changing a define: see THE SOFTWARE section for further details).

The device enumerates as a USB Human Interface Device (HID) so no driver should be
needed for normal use. Only if you want to change those assignments via USB you need
to install the additional filter driver (see THE SOFTWARE section for further details). The
new 8 axes per joystick version is a full speed device, the older 4 axes per joystick a low

speed one.

"Periteriche di gioco

[ueste impoztaazioni conzentono di configurare ke penfeniche di
@ ginco installate sul computer.

Feriferiche di gioco installate

Periferica di gil:nco Stato
[
RC Joyztic NG 2 (]
Aggiungi...] [Rirnuioyi] [Fropriet]
l Avanzate. . l [Hisoluzione dei problemi...]

How the peripheral appears inside
Windows Control Panel -> Game Controller: 2 joysticks

Impostazioni | Test |

Testare periferica di gioco. Se la periferica non funziona correttamente,
potrebbe eszere neceszaria una taratura. Per la taratura pazzare alla
zcheda Impostazioni.

"= Proprieta - RC Joystick NG” 2

Az

Agze X fhs.. Aszze. Rota. Rota. Rota. Com.. Indi.

Pulzarti

00000000

i] 4 I[Anrulla J Applica

8 axes (and 8 buttons) per joystick version:
properties of each one of the 2 joysticks

S Droprieta " RC Joystiek NG’ 2

llmpnstazinni| Test |

Testare periferica di gioco. Se la periferica non funziona correttamente,
potrebbe eszere neceszaria una taratura, Per la taratura pazsare alla
zcheda Impostazioni.

Bz
) . .
Azze ¥ b, Acce. Tirni..
Pulzarnti

00000000

Lok] lannulan| | 2ppiica

Older 4 axes (and 8 buttons) per joystick version:
properties of each one of the 2 joysticks

Sorry... the figures above are from italian version of WinXP and it seems that Home
Edition doesn't allow to change the language :-(

We are sure you understand that we are not responsible in any way if some smoke
begins to come out from your computer and/or radio transmitter ;-) however read
carefully the DISCLAIMER below.

DISCLAIMER

The package of Software and Hardware schemes you can download from our pages
is provided "as is" without any guarantees or warranty. Although the authors have
attempted to find and correct any bugs in the package, they are not responsible for
any damage or losses of any kind caused by the use or misuse of the package. The
authors are under no obligation to provide service, corrections, or upgrades to this
package.

THIS SOFTWARE AND HARDWARE IS PROVIDED "AS IS" AND ANY EXPRESS OR
IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR
CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
USE OF WHAT YOU FIND ON OUR PAGES, EVEN IF ADVISED OF THE POSSIBILITY
OF SUCH DAMAGE.

QUICK STEP BY STEP GUIDE

This is what you need to have the interface working on Windows:

Build the hardware as described in THE HARDWARE section below. You can
choose from a SMD and a Through Hole version. Double check it (especially USB
connection and pinout)... after all you have to connect it to your radio controller and
your PC!! ;-)

Download the software package rcjoyX.X.X.zip; the package should unzip inside
the top level directory rcjoyX. X. X (X.X. X is the version of the software).

Program the PIC with the firmware (rcjoyX.X.X\bin\pic\Xaxes\rcjoyX.X.X.hex) as
described in section Programming the PIC below; don't connect to USB while the
device is connected to the programmer!! (read Programming the PIC NOTE)
Disconnect the device from your programmer!! (read Programming the PIC NOTE)
and connect it to a USB port. At this point the Windows should recognize (we hope
;-)) the hardware and automagically install the HID driver. Note that it could take a
while to complete. If all goes ok under Control Panel -> Game Controllers you
should see two new joysticks both simply named RC Joystick NG*2. The first in the
list should be the one referred here as Joy1, the other Joy2. On most recent Linux
distributions the device will be recognized as soon as you connect it to a USB port
(if not you could need to manually load a kernel module... try modprobe joydev) and
two new joysticks will be available as /dev/input/jsO and /dev/input/js1 (if you
already have some other joystick connected the numbers could be different); to test
them you can launch jstest /dev/input/jsO and jstest /dev/input/js1 (your distribution
should provide it; on debian it's inside joystick package together with other related
utilities).

Connect the device to the radio in any way (probably you have to arrange some
kind of connector and cable) referring to input signal connector pinout described in
section Connectors Pinout below and looking for something like buddy box
connector or PPM/PCM output description on your radio manual (PPM/PCM
mode); if your radio have not a PPM/PCM output please refer to Schematic
section to see how to directly connect its potentiometers/switches (ADC mode). At
this point in PPM/PCM mode turning on the radio the led should also turn on; if it
doesn't happen it probably means that the device was not correctly configured by
the host (try also to disconnect, wait a while and reconnect) or the input PPM signal
isn't read correctly (check the radio cable you have made, connectors, pinouts...
and also refer to section Known Issues); in ADC mode the led will not turn on: it
monitor only the PPM/PCM input signal (you can select PPM/PCM mode or ADC
mode setting Modulation parameter with set_assignments utility; see Assignments
below).

NOTE: when you connect the radio to this interface you should remember to disable
the transmission stage. This help to avoid the risk of interferences with other radios
working near to you (or even with some electronic devices in the house as
happened to us). Moreover the radio with transmission disabled request only a few
percent of the power requested in normal use: the radio battery should last many
many ours in this way. Refer to your radio manual on how to do that. With our
Graupner MC-12 we simply remove the crystal.

The following steps are needed if you want to change default assignments table on the fly
via USB (refer to section THE SOFTWARE below and in particular Assignments; note
that when you program the firmware the eeprom will also be filled with default
assignments, that are also the same you find below in this manual and in the file

set_assignments.txt provided inside the software package; if you don't need to change
them you can ignore the following steps):

Go to rcjoyX. X. X\bin\windows and install the filter driver libusb-win32-filter-
bin(...).exe (for linux you need to have libusb installed)

Go to rcjoyX. X. X\bin\windows\Xaxes directory using windows file explorer or the
command line shell (for linux inside rcjoyX.X. X\bin\linux\Xaxes)

Edit set_assignments.txt (or a different text file if you prefer) to suite your needs
referring to section Assignments below.

Launch set_assignments; you have the option to specify as a command line
parameter the text input file you want to use if different from the default
set_assignments.txt; set_assignments will also verify that eeprom is correctly
written and reset the device to immediately use the new assignment settings; and
because they are written in eeprom, it will remember them even if disconnected
(until set_assignments is launched again or the entire firmware is reprogrammed).
Note that if set_assignments exit with a parsing error you can be sure that nothing
has been written to PIC eeprom yet: it begins to write eeprom only when parsing of
input file is completed succesfully.

If you want to check what assignments are saved into PIC eeprom you can use
get_assignments for saving them to get_assignments.txt (or the text file you can
specify as a command line parameter). Note that get _assignments doesn't ask
before overwriting an existing destination file to avoid continuous annoying
prompts... but if you don't like that refer to section Computer Sources below. The
format of get_assignments.txt is the same readable by set assigments. It is also
well commented by the program: each table line shows the assignment code of the
relative channel and as a comment also the exhaustive explanation of the
assignment (channel and the meaning of the assignment code); so you can use it
also to verify if you have correctly choosen assignment codes.

Enjoy it :-)
Alessio & Andrea

THE HARDWARE

RC Joystick NG? (like RC Joystick NG) can use the same PCB as RC Joystick: the only
differences are in the resonator value, pull-up resistor R3 is no longer required and
obviously in the completely different chip: PIC18F2455/2550 instead of PIC16F745/765; in
fact from the hardware point of view these new chips are pin to pin compatible with the old
chips, but require a different oscillator value, can be configured to work with internal pull-
up instead of external resistor R3 (used before to be enumerated as a low speed device)
and are completely different and not compatible from the firmware point of view; moreover
they have flash program memory so can be programmed more than once and have also a
non-volatile eeprom data memory used by this interface's firmware to store assignment
settings.

Now the circuit comes in 2 versions: the original SMD 2 x 4 cm PCB and a new slightly
grater (about 6 x 2.5 cm) through hole PCB for the ones who prefer this technology or find
difficult to make SMD circuits at home. You can find the two versions inside the archives
rcjoyng2_SMD.zip and rcjoyng2_TH.zip. The archive rcjoyng2_eagle.zip contains project
folder for Cadsoft Eagle (we use Light Edition, the freeware non-profit limited version) you
can find at http://www.cadsoft.de/ .

Schematic

Below you can see the schematic of the SMD version of the circuit; even if not specified
here you can use both PIC18F2455/2550S0 chips.

Yoo

R4
10k

VDD

Yoo

JF3
IC1 =]

Ia]
Yoo

MCLR#ENPP REF
RBE

RAD/AHND REs |2 [S=s
RAT/ANT RE: |2 R -
RADIANZ REZ EX 200 M \% []_\c
RAT/ANIANVREF RE2 % F¥-- & el =
RAL/TICK] RET = = T
RAS/ANA INT/RED e
QSC1/CLIN DT/RNRCT]—7 DD R1 1JP2
OSC2/CLKOUT ckmiRcE L A -
RCOTT 050/ CKI . 2%
RC1TIOSICCR2 VUSE [P RC
RC2/CCP D+
ol] 7
3 gg VES
E] Y

M=)]
@15‘3' PIC18F245550 % UsE

e WES

\S’;Js B
&

DON'T solder R3: the pull-up is done internally and is software-configurable

Yoo

Jag) 8 () I

C2

Toon

[oferfefeors |-

i

o
)
‘|i|3 I
CSTC
REST

)) | e}

Schematic of the SMD version

http://www.cadsoft.de/

The through hole version schematic is slightly different; only this one includes the analog
inputs sockets (JP4 and JP5) for directly connecting radio potentiometers/switches (ADC
mode):

YOD

R4
10k

\é.'DJD
vOD
1P3
11 a =
V0D 5 VOD
I wcLranep Re7 g:
REE |
12 E
RADIAND RES RE e
S 1 2] Radian] REA 2 - 200
- E = RAZIANZ RES \g
U 10n 2] RAIANIVRER REC Jrs D YEE pli=
= JP4 = RA4TOCKI RE1 B Chg.12 {blue)
o Ch1.5 RAS/ANS INT/RED
5 15
OSCICLKIN Yo L
a T D oscarcikour ClTHReE [és VD
| RCOM030/TICK) B
L] R T10SVCCRz wuse [P
3] Rezicer o+ [I L
v g
vas 5
elml PIC 18F 2455/ 25505F Ven
1
= VES
\% 200n
5

s

3 (pull-up from YUSE and D-) has been removed: the pull-up is done internally and is software-configurahle

Schematic of the Through Hole version

The input PPM/PCM signal (used in PPM/PCM mode) from JP2 is connected to PIC
INT/RBO pin through a NPN transistor configured in common emitter mode (and then is
inverted: this shouldn't cause any problem: see section MODULATIONS below). This input
stage gives some problems with some JR radios (see also Known Issues section below
for a solution).

For directly connecting old radios potentiometers/switches (ADC mode) we have provided
specific connectors only on the Through Hole version of the PCB (see also Connectors
Pinout below). In ADC mode, instead of reading from PPM/PCM input signal (RBO pin),
the software reads 12 channels Ch1..Ch12 from the PIC analog inputs pins ANO..AN11
through internal 10 bit (1024 levels) Analog to Digital Converter. Remember that on 28
pins device (18F2455/2550) AN5, AN6 and AN7 pins are not implemented so with this
circuit Che, Ch7 and Ch8 will not be available: only Ch1..Ch5, Ch8..Ch12 corresponding to
JP4 and JP5 pins; but the same firmware programmed into a 40/44 pin device
(18F4455/4550) would read all 12 channels.

The voltage range converted by the ADC is from VSS = 0 to VDD = 5V; so you should
verify that your radio feed the potentiometer with 5V: measuring the voltages of the two
side connector of the pots referred to radio GND they should be 0 and 5V, while the cursor
(pot center pin) should sweep between 0 and 5 while moving the stick; if that is ok all you
have to do is: connect the ground of the interface (VSS on the ICSP) with the GND of your
radio, each pot cursor (pot central pin) to a JP4 or JP5 pin and then turn on the radio; you
could choose the arrangement of this connection depending on what radio brand and
mode you want to emulate (refer also to channel usages list for some radio brands in
section Assignments below); or you could simply choose your own private arrangement;
but in both cases you should remember which stick pots is connected to each channel for

correctly configuring assignments later using the utility set_assignments. You can also try
to connect radio switches to some channels... if for example you find that one of the switch
pin voltage goes from GND to 5V... later you could assign it to an axis or button depending
on simulator needs. With this kind of connection you have to keep your radio on when
using with this interface (remember to remove the crystal or disable in any other way the
transmission to avoid interferences and extend the life of the battery).

But in case your radio uses different voltage levels the things could be different: if the
range is lower you could be still able to use the connection described above with a
calibration inside control panel -> game controllers and some loss in resolution; but if the
range is greater you should never connect the radio to analog inputs or the PIC could be
damaged!! In this case, and also in case you don't want to keep your radio on, or you have
an old useless radio, you could proceed with another type of connection: disconnect all the
pots pin from the radio and connect them to the interface in the following way: the two
side pins of each pot go one to VSS and one to VDD (you can take VSS and VDD from
ICSP connector, refer to Connectors Pinout) and the pot center pin to one of the analog
inputs as described before. Idem for a three pins switch. This type of connection has the
advantage that the radio doesn't need to be turned on, then no need of recharging the
battery... but also has the disadvantage that the pots pins should be disconnected from
the radio before connecting to this interface to avoid possible damages.

Power supply (VDD/VSS) from USB (JP1) and from ICSP connector (JP3) are connected
together inside the device so for security reasons you should never connect the device to
both USB and Programmer (see section Programming the PIC below).

RB5 drives the led through a resistor; the value you see above (R5 = 200 Ohm) is for blue
led only. If you want to use lower voltage led (red, green, yellow...) you should use 1k
resistor instead (or led could be destroyed... see also Parts List below). Led is on when
the input signal is detected (and the host has succesfully configured the device as a USB
HID peripheral).

The pull-up of D- line is done internally and is software configurable so you don't need to
solder R3. It is present here in SMD schematic and layout only because RC Joystick
NG/NG? share the same PCB with old 16C745 equipped RC Joystick version that needs it
(and also in case you prefer to modify the firmware sources disabling internal pull-up; see
also Parts List below).

Resonator here is 4 Mhz (in old RC Joystick with 16C745 was 6MHz; see also Parts List).

Layout

The layout you find below use SMD components to build a very small PCB (only 2 x 4 cm):

D1 (blue)

kﬁ $1 IC1
RSP C18F2485S0

JP3
ICSP CSTCC

DON'T solder R3: the pull-up is done internally and is software-configurable

Layout of the SMD version

if you prefer you can use the through hole version (about 6 x 2.5 cm):

D) JP5 Ch9..12

PPM/PCM

C4liﬂ|!*'“’ Cc3
27p

R3 (pull-up from VUSB and D-) has been removed: the pull-up is done internally and is software-configurable

Layout of the Through Hole version

PCB

Below you find top and bottom sides of the PCB ready to print: scale 1:1, mirrored copper
side so you can directly print them on trasparencies and place ink side in contact with
copper (photoresist covered) for exposing to UV (this prevent the UV light to diffuse under
the ink through the transparency film causing less sharp edges).

The SMD version:

Top (SMD version; mirrored copper side; scale 1:1)

Bottom (SMD version; mirrored copper side; scale 1:1)

-{ZZE{ @k

Top (Through Hole version; mirrored copper side; scale 1:1)

and the through hole one:

odmoom

o 00000
“\ 0000 kI
00Y 00 00QQ0_pP O

Bottom (Through Hole version; mirrored copper side; scale 1:1)

For the SMD version you have to solder 6 vias: you can do it by inserting a little piece of
wire into the holes and soldering on both top and bottom sides.

For the Through Hole version you have to solder only one via but you should solder each
pad of each component on both top and bottom sides (unless you are able to do metalized
holes).

Connectors Pinout

JP1: usb cable: 4 wires to the A type USB connector:
1=USB 1 (m red wire = Vbus)
2 = USB 2 (o white wire = D-)
3 =USB 3 (m green wire = D+)
4 = USB 4 (m black wire = Gnd)

e JP2: RC transmitter cable: 2 wires from buddy box:

1 = PPM Signal
2=GND
e JP3: ICSP connector: SIL 5 pin male connector:
1=VPP
2=VDD
3=VSS
4 = RB7
5=RB6
e JP4: analog inputs connector for ADC mode: SIL 5 pin male connector
1 =Ch1 (ANO)
2 =Ch2 (AN1)
3 =Ch3 (AN2)
4 = Ch4 (AN3)
5= Ch5 (AN4)

e JP5: analog inputs connector for ADC mode: SIL 4 pin male connector
1 = Ch9 (ANS8)
2 =Ch10 (AN9)
3 =Ch11 (AN10)
4 =Ch12 (AN11)

o PIC18F2455/2550: 28 pin PDIP or 28 pin SOIC

MCLRVPP/RE3— []°1 N 28[1= RB7/KBI3/PGD
rRAO/ANO=<—=L] 2 27[1*— RB6/KBI2/PGC
RA1ANT =[] 3 26[1= RB5/KBI1/PGM
RA2/AN2/VReF-/CVRer=— L] 4 25[1+ RB4/AN11/KBIO
RA3/AN3NVRer+=—>L] 5 i 24[1= RB3/AN9/CCP2"VPO
RA4/TOCKI/C10UT/RCV=<—=L] & I8 23[1+ RB2/ANS/INT2/VMO
RA5/AN4/SS/HLVDIN/C20UT=+—>[] 7 L 22[1= RB1/AN10/INT1/SCK/SCL
vss—=[] 8 - = 21[= RBO/AN12/INTO/FLTO/SDI/SDA
osc1icLki—=[] 9 L 20[J=— Voo
0SC2/CLKO/RA6<— [10 oo 19[J=— vss
RCO/T10SO/T13CKI <[] 11 18[]+ RC7/RX/DT/SDO
RC1/T10SI/CCP2M/UOE<—[] 12 17[J*— RC6/TX/CK
RC2/CCP1=—=[]13 16[J*—> RC5/D+/VP
vuss=—=[]14 15[J*—> RC4/D-VM

Parts List

Notes:

SMD version:
« RES1. 4 MHz ceramic resonator (3 terminals with built in parallel
capacitors for example muRata CSTCC4.00MG)

CT: 200 nF capacitor (0805)
C2: 100 nF capacitor (0805)
R1: 22 kQ resistor (0805)

R2, R4: 10 kQ resistors (0805)

R5: 200 Q resistor, but only if D1 is blue !! (0805)

IC1: PIC18F2455-1/SO or PIC18F2550-1/SO (28-Lead SOIC)
D1: blue led; if you use other colors put R5=1k !! (0805)

T1: BC846 transistor or equivalent (SOT23)

Through Hole version:

. XT: 4 MHz crystal (for example HC49/S)

. CT. 200 nF capacitor (polyester, grid 5mm)

. C2 100 nF capacitor (polyester, grid 5mm)

o« C3,C4: 27pF (ceramic, grid 2.5mm)

. RIT: 22 kQ resistor (Va W, 5%)

« R2, R4: 10 KkQ resistors (Va W, 5%)

« RS: 200 Q resistor, but only if D1 is blue !! (Va W, 5%)

. ICT: PIC18F2455-I/SP or PIC18F2550-1/SP (28-Lead PDIP)
« Df: blue led; if you use other colors put R5=1k ! (3mm)

o« TT: BC107 transistor or equivalent (TO18)

The pull-up of D- line is done internally and is software configurable so you don't
need anymore the 1.5k resistor R3: we have left the R3 pads on the SMD PCB that
is the same PCB as in RC Joystick / NG but you must not solder it unless you
modify the firmware sources disabling internal pull-up; on the Through Hole version
it has been removed.

If you prefer to use low voltage leds (red, green, yellow...) instead of blue ones

you have to replace R5 200 Ohm resistor with 1K one, or your led could be
destroyed.

Assembling

Once you have soldered all components you have to find a way to connect it to USB and
your radio: we have directly soldered to JP1 the final part of a USB cable and to JP2 a
spiral audio cable with a mono plug (refer also to Connectors Pinout above). Then we
have mounted a mono jack on the radio for connecting to buddy box socket inside. You
may have to choose a different plug depending on your radio buddy box connector. You
can see the result of the SMD version (we have not made the Through Hole one) in the
photos below. We have choosen to solder the cables directly to the PCB and fix them with
hot melt glue but if you prefer you can mount two SIL 4 pin and 2 pin connectors on the
PCB and female connectors on the cables. Moreover we prefer to see the PCB “naked” :-)
but perhaps you would like to mount all in a little box... recommended to avoid external
contacts and short circuits....

Really there is also an alternative way to mount it: the PCB is so small (4 x 2 cm for the
SMD version and about 6 x 2.5 for the Through Hole one) that you could mount it directly
inside your radio if you find a way to arrange a USB connector for the external cable and a
pass-through connection between buddy box internal socket and external connector; the
input impedance of this circuit should be high enough (>20k) to be almost transparent. If

your radio has not PPM/PCM you could do it with ADC mode: if potentiometers/switches
inside are fed with a 5V voltage you don't need to disconnect them from the radio;
otherwise or in case you have an hold useless or malfunctioning radio you can transform it
into a stand alone controller for PC. Obviously the disadvantage of internal mounting is
that if you want to use more radios you need more interfaces...

Programming the PIC

Before using the interface you need to program the PIC with the firmware binary file
rcjoyX. X. X\bin\pic\Xaxes\rcjoyX.X.X.hex. Xaxes stands for 8axes or 4axes that refers to
the two versions of the firmware: 8 axes per joystick full speed device or 4 axes per
joystick low speed device; simply choose the one you prefer...

You should be able to program the 18F2455/2550 with our PicProgrammer (you can find
at http://projects.qgstep.net/ -> PicProgrammer) and WinPic800 software (you can find at

http://www.winpic800.com/).

For setting WinPic800 to work with our PicProgrammer (or a “Tait classic” programmer)
you have to go to "settings->hardware" select “Polivalente” in the "Selection of hardware"
and "save as" Tait 7407 PNP; then UNCHECK "Blockade configuration" and modify the
settings as showed in the picture below; when finished remember to check again
"Blockade configuration" and click on "Apply edits":

=) o Bl LA b i | prr 1o%m 1% | w |
WinPic800 [Hardware Settings |

Selection of hardware I/0 Bits to port

JDM Programmer [E‘ Blockade configuration -
Pablin LPT i* Use Wppz [

Pic scnaol 0 =] tecsaw MO v
i:z:zgner | State - Name - Bit - Rddr - Inv- Default TEST
Polivalente = @ Data [0~ [+o~] u o
iiipicz | @ Dataln |ACK v| +1 |—
Protopic2 _ @ cicer [1 ==l T T
Tait 7407 PHP |v @ s . = ’E = & >
;Ed;;é |LPT1 z Q wwe [+ Izl ®F £ |T
@ ve [Hmdr o |r
O melricee[s <] [+ox] T 5 6

| x=l=al

Cancel Apply edits

For correct programming of eeprom data memory with WinPic800 you need also to
uncheck the option: Settings -> Software -> .hex -> File .HEX -> Data 18Fxxx Address * 2:

http://www.winpic800.com/
http://projects.qstep.net/

WinPic800 [Software Settings X

] Program| & Device| [*] .hex Jm VR

v Update File before programming

[File .HEX -> Data 18Fxxx Adress * Z

Aocept

Obviously if you prefer you can use your favorite hardware/software (in this case you
should check before if it's compatible with 18F2455/2550)

The interface has an ICSP connector you can use to program the chip directly on circuit.

NOTE: Remember to DISCONNECT from USB port before connecting the ICSP to
programmer and viceversa: USB and ICSP should NEVER be connected both at the same
time to avoid possible damages to the programmer or computer!! (the 5V PC USB supply
and 5V programmer ICSP supply will be connected together and probably they haven't
exactly the same level...).

For the ICSP connector pinout see above Connectors pinout.

For more informations about ICSP pic programming and supported microcontrollers see
Microchip ICSP Guide at http://ww1.microchip.com/downloads/en/DeviceDoc/30277d.pdf

http://ww1.microchip.com/downloads/en/DeviceDoc/30277d.pdf

Known Issues

Some JR owners have reported unstable behaviour of the input stage with their radios
(irregular blinking of led... irregular joystick controls...). The following correction seems to
work for this radios: you have to add a 220k resistor between VDD and the transistor base.
We don't know really what causes the problem because we have never had one of this
radio to test... but we can suppose that these radios could probably use some kind of open
collector output... anyway this correction worked ok for all who reported the problem:

Add correction resistar for some JR

YOO
1 JP3
7
3 YOO
] 1
5
ICSP
% 2= R
[] 220k
9 R1_ 1 JP2
oA 27k 2
T1 RC

85 WSS

THE SOFTWARE

For this interface you need two softwares: the firmware for programming the PIC on the
board and a program for your computer needed for configuring channels assignments
directly via USB. In the zip archive rcjoyX.X.X.zip you'll find sources and binaries of both.
rcjoyX.X.X.zip should unzip to a top level directory called rcjoyX. X.X (X.X.X is the software
version).

PIC Firmware Binary
The firmware binary (ready for programming the pic) is:
rcjoyX. X. X\bin\pic\Xaxes\rcjoyX.X.X.hex

where Xaxes stands for 8axes or 4axes that refers to the two versions of the firmware: 8
axes per joystick full speed device or 4 axes per joystick low speed device; simply choose
the one you prefer...

PIC Firmware Source

Firmware source is inside rcjoyX.X. X\source\pic. For edit/compiling it using Microchip
MPLAB IDE you need to do the following steps:

« open MPLAB IDE and create a new project specifing rcjoyX.X. X\source\pic as
project directory and rcjoyX.X.X as project name.

o Referring to the project tree window add rcjoy.asm inside Sources Files;
ENGR2210.inc, rcjoy _defs.inc and usb_defs.inc inside Headers Files; 18f2455.1kr
inside Linker Scripts.

e choose PIC18F2455 inside Configure -> Select Device

o select which version you want to compile by changing the INTERFACE_TYPE
define inside rcjoy defs.inc: 0 for 8 axes per joystick full speed device, 1 for 4 axes
per joystick low speed device

o to compile.... Project -> Build All

Firmware for PIC18F2455/2550 is written in assembler and is based on Bradley A. Minch
assembler framework you find at http://pe.ece.olin.edu/ece/projects.html (in particular
lab2) with the addition of the PPM and PCM signal handling and returning data routines
and some modifications to USB part (descriptors, vendor specific requests, and some
adjustments to make it act as a compund and full speed device).

Thanks to Shaul Eizikovich, author of SmartPropoPlus, for PCM signal infos and help for
testing; his project page: http://www.geocities.com/shaul_ei/SmartPropoPlus.html

Thanks to Rinaldo Dos Santos for Futaba PCM1024 recordings and help for testing.

This firmware uses PIC Timer1 (16bit) for measuring pulses duration (see also
MODULATIONS below); this (together with proper Timer1 setting) allows to get up to
about 5000 points of resolution per channel if input signal is PPM. Depending on its
modulation the input signal is decoded to calculate each channel value and the
corresponding value of the joystick control assigned to that channel; this assignment is

http://www.geocities.com/shaul_ei/SmartPropoPlus.html
http://pe.ece.olin.edu/ece/projects.html

software configurable and stored into pic eeprom: see section Assignments below for
details. If the assigned joystick control is a button a pressed button condition is returned if
the corresponding channel value is greater than a threshold (see BUTTON_THRESHOLD
define inside rcjoy defs.inc).

Computer Binaries

Computer binaries for Windows are inside rcjoyX. X. X\bin\windows\Xaxes (for linux inside
rcjoyX. X. X\bin\linux\Xaxes), where again Xaxes stands for 8axes or 4axes, choose the
one that corresponds to the firmware version you want to program: 8 axes per joystick full
speed device or 4 axes per joystick low speed device... If you use Windows you first need
to install the filter driver libusb-win32-filter-bin(...).exe inside rcjoyX.X. X\bin\windows (it
comes from LibUSB-Win32 project you can find at http://libusb-win32.sourceforge.net/); for
Linux you need to have libusb installed (http:/libusb.sourceforge.net/). After that you can
edit set_assignments.txt to suite your needs and then connect the interface to an USB
port and use set_assignments to send them to the interface; the program also verify that
the assignments are correctly written inside PIC eeprom and reset the device to use the
new settings. If for some reason you need to read the assignments from interface you can
use get_assignments that will write them to the file get_assignments.txt. If you prefer to
use a different file name instead of the defaults you can specify it as a command line
parameter (for ex.: set_assignment nomefile). See also section Assignments below for
further details.

Commands below will display usage:
set_assignments -h (or --help, /h, /?)
get_assignments -h (or --help, /h, /?)

Computer Sources

Computer sources are inside rcjoyX.X. X\source\computer. they work for both linux and
windows: for compiling on Windows you need to install MinGW (http://www.mingw.org/)
and the LibUSB-Win32 filter driver libusb-win32-filter-bin(...).exe in rcjoyX.X.X\bin\windows
and then, supposing that mingw\bin directory (where gcc.exe is located) is in your path
environment variable, launch gcc_compile.bat that contains the following commands:

gcc set assignments.c c:\Programmi\LibUSB-Win32\lib\gcc\libusb.a -o set assignments.exe
gcc get assignments.c c:\Programmi\LibUSB-Win32\lib\gcc\libusb.a -o get assignments.exe

set_assignments.c and get_assignments.c also contains the following include:

#include c:\Programmi\LibUSB-Win32\include\usb.h

if something goes wrong also check that libusb.a and usb.h are in these locations. To
compile on Linux you need to have installed libusb (together with devel package: usually
-dev or -devel, for example on debian linux we have to install libusb and libusb-dev
packages) and then simply run gec_compile.sh that contains the following commands:

gcc set assignments.c /usr/lib/libusb.a -o set assignments
gcc get assignments.c /usr/lib/libusb.a -o get assignments

set_assignments.c and get_assignments.c also contains followin include:

#include <usb.h>

http://www.mingw.org/
http://libusb.sourceforge.net/
http://libusb-win32.sourceforge.net/

You can find LibUSB-Win32 at http://libusb-win32.sourceforge.net/ and libusb at
http://libusb.sourceforge.net/

Before compiling the two utilities verify that the INTERFACE_TYPE define inside the two
source files reflects the firmware version you are using (8 axes per joystick or 4 axes per
joystick).

set_assignments.c parses the file set_assignments.txt (or the one specified on command
line) and uses libusb function usb_control_msg to send the interface vendor requests for
writing eeprom bytes, reading them for verifying and than resetting the running firmware to
use the new values. See also Assignments below.

get_assignments.c use libusb function usb_control_msg to send the interface vendor
requests for reading eeprom bytes and than writes them to the file get_assignments.txt (or
the one specified on command line; note that this program doesn't ask before overwriting
an existing destination file; if you want it to ask before overwriting you have to uncomment
the PROMPT_OVERWRITING define. See also Assignments below.

http://libusb.sourceforge.net/
http://libusb-win32.sourceforge.net/

Assignments

The 8 axes per joystick version of the interface can read a maximum of 12 radio channels
and a total of 32 joystick controls (24 for 4 axes per joystick version) can be assigned to
each one of these channels: normal radios will have less than 12 channels and PPM and
PCM modulations rarely allows more than 8 channels at this time; anyway all these
assignable joystick controls serves to give a good assignment versatility....; the
assignments are software configurable and stored inside the PIC 256 byte eeprom: from 1
to 18 different assignments tables can be prepared into eeprom to suite different
radios/simulators needs. At any time it is possible to change which table to use by simply
changing last eeprom byte (TableSelect byte). The first byte of a table is the Modulation
code byte, that specify the type of modulation PPM/PCM used by the radio or 0 in case
youre radio is not equipped with PPM/PCM and you are going to use the ADC mode:
directly connect the potentiometers/switches of your radio to analog input ANO..AN11
(JP4, JP5) instead of using PPM/PCM input; the following 12 bytes are the assignment
codes of each channel. Assignments codes are ordered inside each table from Ch1 to
Ch12.

Modulation codes have the following meanings (see also MODULATIONS below):

(0x00)
(0x01)
(0x02)
(0x03)
(0x04)

ADC mode: Chl..Chl2 from PIC pin ANO..AN11 (JP4, JP5), ADC range VSS..VDD (0..5V)
PPM/PCM mode: PPM

PPM/PCM mode: Sanwa/Airtronics PCM1

PPM/PCM mode: Sanwa/Airtronics PCM2

PPM/PCM mode: Futaba PCM 1024

S w NP O

Assignment codes of joystick controls depend on what version you decide to use: for the 8
axes per joystick version we have for each one of the two joystick (note that the figures
below are screenshoot of an italian version of WinXP and unfortunately WinXP Home
Edition does not seem to allow to change the language so we can't show them in english)

7 X |

Impostazioni | T est

Testare periferica di gioco. Se la perniferica non funziona comettamente,
potrebbe eszere necessaria una taratura, Per la taratura pazsare alla
zcheda Impostazioni.

Assi

" ‘AEnEnn

Assed /Az.. Azze. Rota. FAota. Rota. Com.. Indi.

Pulzanti

00000000

[ok [anue |

8 axes (and 8 buttons) per joystick version:
properties of each one of the 2 joysticks

the relative assignment codes are:

0 (0x00) = none (relative channel ignored)
1 (0x01) = Joyl X axis

2 (0x02) = Joyl Y axis

3 (0x03) = Joyl Z axis

4 (0x04) = Joyl RotX axis
5 (0x05) = Joyl RotY axis
6 (0x06) = Joyl RotZ axis
7 (0x07) = Joyl Dial axis
8 (0x08) = Joyl Slider axis
9 (0x09) = Joyl Button 1
10 (0Ox0a) = Joyl Button 2
11 (0x0b) = Joyl Button 3
12 (0x0c) = Joyl Button 4
13 (0x0d) = Joyl Button 5
14 (0x0Oe) = Joyl Button 6
15 (0x0f) = Joyl Button 7
16 (0x10) = Joyl Button 8
17 (0x11l) = Joy2 X axis

18 (0x12) = Joy2 Y axis

19 (0x13) = Joy2 Z axis
20 (0x14) = Joy2 RotX axis
21 (0x15) = Joy2 RotY axis
22 (0xle6) = Joy2 RotZ axis
23 (0x17) = Joy2 Dial axis
24 (0x18) = Joy2 Slider axis
25 (0x19) = Joy2 Button 1
26 (0xla) = Joy2 Button 2
27 (0x1lb) = Joy2 Button 3
28 (0xlc) = Joy2 Button 4
29 (0x1d) = Joy2 Button 5
30 (0xle) = Joy2 Button 6
31 (0x1f) = Joy2 Button 7
32 (0x20) = Joy2 Button 8

NOTE: negating a code reverses the relative channel

For the 4 axes per joystick version we have instead for each one of the two joystick:

'Impoﬂajond Test |

Testare periferica di gioco. Se la penferica non funziona comettamente,
potrebbe eszere neceszaria una taratura. Per la taratura passare alla
scheda Impostazioni.

Agsi
' . .
Assed /A, Acce. Tima..
Pulzanti

00000000

—TI— T

Older 4 axes (and 8 buttons) per joystick version:
properties of each one of the 2 joysticks

and the relative assignment codes are:

o

(0x00)

none (relative channel ignored)

1 (0x01) = Joyl X axis
2 (0x02) = Joyl Y axis
3 (0x03) = Joyl Throttle axis
4 (0x04) = Joyl Rudder axis
5 (0x05) = Joyl Button 1
6 (0x06) = Joyl Button 2
7 (0x07) = Joyl Button 3
8 (0x08) = Joyl Button 4
9 (0x09) = Joyl Button 5
10 (0xO0A) = Joyl Button 6
11 (0x0B) = Joyl Button 7
12 (0x0C) = Joyl Button 8
13 (0x0D) = Joy2 X axis
14 (0x0E) = Joy2 Y axis
15 (0xO0F) = Joy2 Throttle axis
16 (0x10) = Joy2 Rudder axis
17 (0x11l) = Joy2 Button 1
18 (0x12) = Joy2 Button 2
19 (0x13) = Joy2 Button 3
20 (0x14) = Joy2 Button 4
21 (0x15) = Joy2 Button 5
22 (0xle) = Joy2 Button 6
23 (0x17) = Joy2 Button 7
24 (0x18) = Joy2 Button 8

NOTE: negating a code reverses the relative channel

Hex codes inside parenthesis will help in case of direct editing of the eeprom data but
inside the file set_assignments.txt (see below) you have to use DECIMAL codes!!

NOTE that from version 3.1.3 you can also assign the reversed channel to a joystick
control by negating the relative code. For negating a code inside set_assignments.txt
simply put a minus sign in front of the decimal code (WITHOUT spaces in between, see
examples below); if you prefer to directly change the codes in the data eeprom or in the
default tables in the source remember to use one byte 2's complement hex values as
negated code.

Table 1 (AssignTab1) fills first 13 bytes of eeprom, table 2 fills the following 13 and so on
for a maximum of 18 tables. A TableSelect value of 1 means table 1 selected and so on.

You could change AssignTab1..18 and and TableSelect directly using your programmer
software or changing eeprom data byte declarations in the source, recompiling it and
reprogramming the PIC. However the fastest way to do that is directly through USB with
the program set_assignments.exe. It requires that LibUSB-Win32 filter driver is installed
on your system (see section Computer Binaries). All you need to do is to edit
set_assignments.txt and set your preferred assignments: you can define from 1 to 18
tables: for defining a table you have to write the relative label (for ex. AssignTab1) in a line
and then up to 13 table elements (decimal) in the following lines, up to one value per line.
First value will be the modulation code. Each of the following values will be relative to next
channel, void lines are simply ignored and comments must begin with “”. If less than 13
elements are specified the others will be set to 0 by default inside the eeprom (that simply
cause the relative channels to be ignored, or, in case of the modulation code, to read the
channels not from the RBO/INTO input signal but from pots connected to ANO..AN11
inputs). Table select byte is defined specifying the label TableSelect in a line and the value
(decimal) in one of the following lines. AssignTab1..18 and TableSelect can be defined in
any order inside the file. Every missing table will be filled with O inside the eeprom. If

missing, TableSelect will be 1 in the eeprom (table 1 selected). Obviously for the interface
to work ok TableSelect should point to a defined table. However any table or table select
error can't cause the interface to hang... only wrong assignments. Note also that
set_assignments doesn't write anyting to PIC eeprom until the parsing process of input file
is completed succesfully.

The possibility to write multiple tables was introduced for the ones who prefer (or are
forced to because for example the utility set_assignments isn't ported yet on their OS) to
directly change PIC eeprom with a programmer (in this way, once they have prepared the
tables, they have to change only TableSelect byte). Also the ones who prefer to take all
their settings in a single file can appreciate that. However, if you prefer, you can also take
a single assignment table per file and use multiple files passing their names to
set_assignments.exe as a command line parameter.

To make the assignments you could have to consider the usages of the 4 main channels
of your radio; below you find these usages for some radio brands:

Futaba/Hitec:
Chl: Aileron
Ch2: Elevator
Ch3: Throttle
Ch4: Rudder

JR/Graupner:
Chl: Throttle
Ch2: Aileron
Ch3: Elevator
Ch4: Rudder

Sanwa/Airtronics:
Chl: Elevator
Ch2: Aileron
Ch3: Throttle
Ch4: Rudder

Multiplex/Robbe:
Chl: Ailerons
Ch2: Elevator
Ch3: Rudder
Ch4: Throttle

As an example here is the the assign tables from the set_assignments.txt provided in the
software package for the 8 axes per joystick version:

; example 1:
; generic; first 8 channels assigned to Joyl 8 proportional axes,
; the remaining 4 to Joyl first 4 buttons

AssignTabl
1 ; Modulation

; Chl
; Ch2
; Ch3
; Chi4
; Chb5
; Cheé
; Ch7
; Ch8
; Ch9
; Chlo0
; Chll
; Chl2

W Jo U b WN

o e
NP O W

; example 2

; for FMS: with these assignments under Mapping / Calibration

; of Joystick interface (FMS menu: Controls -> Analog control...)
; we will see all the first eight channel of our radio correctly
; numbered and working. All you have to do is to assign whatever
; functions to them according to channel usages of your radio

; (above there is also a list of the channel usages of some radio
; brands)

AssignTab2
1 ; Modulation

; Chl
; Ch2
; Ch3
; Ch4
; Chb
; Che
; Ch7
; Ch8
; Ch9
; Chlo0
; Chll
; Chl2

e
CO OO ®I®o WN -

; example 3

; futaba radio with non Interlink Realflight G2: first 4 channels
; mapped to 4 proper Joyl controls and the following 4 to the first
; 4 buttons; with this assignments all we need is to go inside

; realflight controller calibration and choose RC Joystick NG"2

; with mode 2 selected; in this way we can also set the preferred
; stick mode (mode 1, 2, 3 or 4) directly inside the radio. If

; your Futaba has PCM1024 you can use PCM instead of PPM putting
; 4 in the Modulation field (Futaba PCM1024 modulation) .

; For other radio brands we simply need to rearrange the order of
; the first 4 assignments (1 2 7 6) comparing the channel usages
; of our radio with futaba's (refer to the channel usages list

; above), moving each of the 4 assignment to the channel that has
; the same usage. For example for JR/Graupner we'll have 7 1 2 6.

AssignTab3

1 ; Modulation
1 ; Chl
2 ; Ch2
7 ; Ch3
6 ; Chi4
9 ; Chb
10 ; Cheé
11 ; Ch7
12 ; Chs
0 ; Ch9
0 ; Chl0
0 ; Chll
0 ; Chl2

; example 4

; ADC mode with Realflight G2: this example show the assignments

; in case we have connected 4 pots and 4 switches of an old radio
; not equipped with PPM or PCM output directly to analog inputs JP4
; and JP5 instead of using PPM/PCM input: in case we choose the

; connection arrangement with JP4 for emulating a Futaba mode 2

; radio (Chl = aileron = right stick left-right, Ch2 = elevator =
; right stick up-down, Ch3 = throttle = left stick up-down, Ch4

; rudder = left stick left-right) and connected switches 1..4 to

; Ch9..Chl2 (JP5), the only thing we have to do as in the previous
; example is to go inside realflight controller calibration and

; choose RC Joystick NG"2 with mode 2 selected.

AssignTab4
0 ; Modulation

; Chl
; Ch2
; Ch3
; Chié
; Chb
; Che
; Ch7
; Ch8

[oNeNoNeNONNNVE
~

9 ; Ch9

10 ; Chl0
11 ; Chll
12 ; Chl2

; example 5

; FlightGear flight simulator; the following assignments let

; flightgear recognize up to 12 proportional channels using

; both Joyl and Joy2 axes; run fgjs utility inside FlighGear

; bin directory for setting joystick control usages; this

; will make the two files jsO.xml and jsl.xml that you could

; rename Joyl and Joy2 and put inside a directory rcjoy inside

; datalinput\joysticks; then you should declare them inside

; Joystick.xml using numbered way instead of named one: both

; Joyl and Joy2 under windows are named RC Joystick NG"2 (and

; for now we have not found a way to give different names to

; them) so they are not distinguishable using named declaration;
; example of these declarations:

; <js n="0" include="Input/Joysticks/rcjoy/Joyl.xml"/>

; <js n="1" include="Input/Joysticks/rcjoy/Joy2.xml"/>

; 1f you have other joysticks and don't know what number to put
; use Jjs demo utility that comes with FlightGear inside bin dir
; some channel could need to be reversed (here or inside the xml)

AssignTab5b
1 ; Modulation
1 ; Chl
2 ; Ch2
3 ; Ch3
4 ; Ch4
6 ; Chb
8 ; Cheé
17 ; Ch7
18 ; Ch8
19 ; Ch9
20 ; Chlo0
22 ; Chll
24 ; Chl2
TableSelect
1

Here is another file example, perhaps it could seem less rigorous but it is as correctly
formatted as before; it shows that formatting requirements are not so rigorous and also
shows how to reverse a channel or tell the firmware to ignore some channels:

; this is another
; correct example

AssignTab7 ; reads only first 10 channels, the remaining 2 channels will be ignored
1 ; Modulation: PPM

; Chl to Ch8 assigned to Joyl analog channels (JR/Graupner optimized arrangement)
1 ; Chl
2 ; Ch2
; Ch3
; Ch4: NOTE that here Ch4 is assigned to Joyl Z Axis (code 3) but REVERSED (-)
; Chb5
; Che
; Ch7
; Chs

0 J o U1 W b
~

; Ch9,10 to first two buttons of Joyl
9 ; Ch9
10 ; Chl0

; last 2 channels omitted: channels ignored

AssignTab3 ; reads only first 8 channels excepting Ch5,

4 ; Modulation: Futaba PCM 1024

; Chl to Ch4 assigned to 4 joyl analog channels

1 ; Chl
2 ; Ch2
3 ; Ch3
4 ; Chi4
0 ; Chb NOTE that 0 means channel 5 ignored

; Ché to Ch8 assigned to 3 Joy2 analog channels

17 ; Cheo
18 ; Ch7
19 ; Ch8

; last 4 channels omitted: channels ignored

TableSelect

; select table 3
3

the last 4 channels will be ignored

If you need to check what assignments are saved into PIC eeprom you can use the utility
get_assignments.exe for saving them to get_assignments.txt (or the text file you can
specify as a command line parameter). Note that get_assignments.exe doesn't ask before
overwriting an existing destination file to avoid continuous annoying prompts... but if you
don't like that refer to section Computer Sources below. The format of the output file
get_assignments.txt is the same of set_assignments.txt than is perfectly readable by
set_assigments.exe. It is also well commented by the program: each table line shows the
assignment code of the relative channel and as a comment also the exhaustive
explanation of the assignment (channel and the meaning of the assignment code); so you
can use it also to verify if you have correctly choosen assignment codes or to get a well
commented file to use instead of the original set_assignments.txt. Use the version 8axes
or 4 axes according to the firmware version you have programmed in the PIC otherwise
get_assignments.txt could be wrong commented.

Below you can see the get_assignments.txt relative to the first example above of
set_assignments.txt (the one provided in the software package for 8 axes per joystick
version); the words in the brackets normal or reversed (in this example are all normal)
reflect the sign of the assignment code (positive / negative) and refer to the way the
channel is assigned to the relative joystick control: leaving it as is, or reversing it.

AssignTabl
1 ; Modulation: PPM
1 ; Chl -> Joyl X axis (normal)
2 ; Ch2 -> Joyl Y axis (normal)
3 ; Ch3 -> Joyl Z axis (normal)
4 ; Ch4 -> Joyl RotX axis (normal)
5 ; Ch5 -> Joyl RotY axis (normal)
6 ; Ché -> Joyl RotZ axis (normal)
7 ; Ch7 -> Joyl Dial axis (normal)
8 ; Ch8 -> Joyl Slider axis (normal)
9 ; Ch9 -> Joyl Button 1 (normal)
10 ; Chl0 -> Joyl Button 2 (normal)
11 ; Chll -> Joyl Button 3 (normal)
12 ; Chl2 -> Joyl Button 4 (normal)
AssignTab?2
1 ; Modulation: PPM
1 ; Chl -> Joyl X axis (normal)
2 ; Ch2 -> Joyl Y axis (normal)
3 ; Ch3 -> Joyl Z axis (normal)
6 ; Ch4 -> Joyl RotZ axis (normal)
8 ; Ch5 =-> Joyl Slider axis (normal)
4 ; Ch6é -> Joyl RotX axis (normal)
17 ; Ch7 -> Joy2 X axis (normal)
18 ; Ch8 -> Joy2 Y axis (normal)
0 ; Ch9 -> none
0 ; Chl0 -> none
0 ; Chll -> none
0 ; Chl2 -> none
AssignTab3
1 ; Modulation: PPM

1 ; Chl -> Joyl X axis (normal)

2 ; Ch2 -> Joyl Y axis (normal)

7 ; Ch3 -> Joyl Dial axis (normal)
6 ; Ch4 -> Joyl RotZ axis (normal)
9 ; Ch5 -> Joyl Button 1 (normal)

10 ; Ch6é -> Joyl Button 2 (normal)
11 ; Ch7 -> Joyl Button 3 (normal)
12 ; Ch8 -> Joyl Button 4 (normal)
0 ; Ch9 -> none
0 ; Chl0 -> none
0 ; Chll -> none
0 ; Chl2 -> none

AssignTab4
0 ; Modulation: ADC mode
1 ; Chl -> Joyl X axis (normal)

2 ; Ch2 -> Joyl Y axis (normal)

O O OO o

9
10
11
12

AssignTabb
1

o W N

8
17
18
19
20
22
24

AssignTab6
0

OO OO OO OO OO oo

AssignTabl8
0

OO OO OO OO OO oo

TableSelect
1

Ch3 -> Joyl
Ch4 -> Joyl
Ch5 -> none
Ch6 -> none
Ch7 -=> none
Ch8 => none
Ch9 -> Joyl
Chl0 -> Joyl
Chll -> Joyl
Chl2 -> Joyl
Modulation:

Chl -> Joyl
Ch2 -> Joyl
Ch3 -> Joyl
Ch4 -> Joyl
Ch5 -> Joyl
Ché6 -> Joyl
Ch7 -> Joy2
Ch8 -> Joy2
Ch9 -> Joy2
Chl0 -> Joy2
Chll -> Joy2
Chl2 -> Joy2
Modulation:

Chl =-> none
Ch2 -=> none
Ch3 -> none
Ch4 -> none
Ch5 => none
Ch6 -> none
Ch7 -> none
Ch8 -> none
Ch9 -> none
Chl0 -> none
Chll -> none
Chl2 -> none
Modulation:

Chl -> none
Ch2 -> none
Ch3 -> none
Ch4 -> none
Ch5 -=> none
Ch6 -> none
Ch7 -> none
Ch8 -> none
Ch9 -> none
Chl0 -> none
Chll -> none
Chl2 -> none

Dial axis (normal)
RotZ axis (normal)
Button 1 (normal)
Button 2 (normal)
Button 3 (normal)
Button 4 (normal)
PPM
X axis (normal)
Y axis (normal)
7 axis (normal)
RotX axis (normal)
RotZ axis (normal)
Slider axis (normal)
X axis (normal)
Y axis (normal)
Z axis (normal)
RotX axis (normal)
RotZ axis (normal)
Slider axis (normal)
ADC mode
ADC mode

AssignTabl selected

MODULATIONS

ADC mode

Not a modulation really: this mode of operation is used by the firmware when Modulation is
set to 0 inside set_assignments.txt. instead of reading input signal from RBO pin the
firmware every time the PIC owns the EP1 or EP2 buffer do an Analog to Digital
Conversion of PIC analog input ANO..AN11 in about 2 ms and send the data to PC. The
PIC ADC has a resolution of 10 bit (1024 levels) for a voltage range from VSS to VDD (0
to 5V). The firmware first select with the internal switch the analog input ANO as the input
of the ADC, wait an acquisition time of 20 Tad = 26uS (Tad is the time required to convert
1 bit and is choosed = 1,33uS) for charging the internal 25pF hold capacitor, then start the
conversion that lasts 10+1 Tad = 14uS, for a total of about 40uS; than select AN1 and so
on for the remaining inputs. The 25pF hold capacitor is charged through an internal
resistance of about 3k plus the source resistance Rs that depends on what pots are used;
we have choosen the maximum possible acquisition time (20Tad) for the best accuracy;
however PIC datasheet recommends a source resistance Rs < 2.5kOhm, than pots <
10kOhm should be used.

PPM (up to 8 proportional channels)

Below you can see the Pulse Position Modulation (PPM) signal timing from Graupner MC-
12 (7 channels) measured with oscilloscope:

22ms (fixed) [< mmm > |

400us (fixed) [|<>]|

->|[<---Init.--->|<-Ch.1->[<-Ch.2->|<-Ch.3->[<-Ch.4->|<-Ch.5->|<-Ch.6->|<-Ch.7->|<---Init.--->|<---
+-—1 +-—1 +-—1 +-—1 +-—1 +-—1 +-—1 +-—1 +-—1 +-—1
| | | | | | | | | | | | | | | | | | |

_ 181 1] 121 13 1 14 | 15 | 16 | [7 1 18 | [T 1_

| <==———- >| channel pulse (modulated): 1500us for channel = 0%;
1100us/1900us for channel = -100%/+100%;
900us/2100us for channel = -150%/+150%
| <==————————- >| init. pulse (modulated): 22ms minus the duration of 7 channels

11500us for 7 channels = 0%
14300us/8700us for 7 channels = -100%/+100%;
15700us/7300us for 7 channels = -150%/+150%;

Since each pulse width is measured between two rising edge, doesn't matter if the radio
has a positive ppm signal (as the one above) or negative (level 1 and 0 inverted) and if we
use or not an inverting separator stage before RBO/INT input pin.

Sanwa/Airtronics PCM1 (8 proportional channels, 10 bits)

Phase1:
- - H LH LH LH L
syncl Ch3 Ch2 Chl Ch4 end
Phase 2
-——— ——- -H LH LH LH -
syncz2 Chb5 Ché Ch7 Ch8 end

Description: we have two phases, 4 channels each: phase1 is introduced by the
syncronization sequence sync1 (4 bit low, 1 high, 3 low, 1 high, 1 low), then 4 channels
data (15bits each), then 1 bit low (end); phaseZ2 is introduced by sync2 (4 bit high, 1 low, 3
high, 1 low, 1 high), then 4 channels data, then 1 bit high (end).

Details:
e bit widht: 0.2ms

e code pattern: 1, 2 or 3 bits pulses allowed for data:
o 1 bit pulse =1

® 2 bit pulse = 10
° 3 bit pulse = 100
examples:
o - = 100110
° -——= - = 100110 (same as above)
e - - - = 111111
o —— = 100100

e channel decoding: every data packet is 15 bits (3 quintets):
[} ChX (15bits): H===LH===LH===L
quintet 3 2 1

o quintets 3, 2 and 1 are decoded into 3 corresponding quartet referring to decoding

table below; use the appropriated column depending on quintet; quintet 3 determines

2 bits of data plus per-channel fail-safe infos; quintet values not listed in the

table are invalid.

[decoded ChX (12bits, but 2 msbits = 0): H==LH==LH==L
quartet 3 2 1

decoded ChX is 12 bits but 2 most significant bits are 0 (quartet 3 value can be
0..3 only) so it's really 10bits (1024 points).

Battery Fail-Safe (BFS):

The first 10 bits of phase 1 begins with a low pulse of 4 bits. The following 6 bits indicate if
BFS mode is on/off. Here are the possible patterns (Including the first 4-bit pulse):

e 0x233 (1000110011) — BFS Off

e 0x229 (1000101001) — BFS On

Sanwa/Airtronics PCM1 decoding table

quintet value quartet value quartet value per-channel
for quintets for quintet 3 fail-safe
1and 2 (quintet 3)
0x09 0x2 0x0 no
Ox0a Oxa 0x0 no
0x0b 0x8 0x2 no
0x0d 0x6 0x0 yes
0x0e Oxe 0x0 yes
0xOf Oxc 0x2 yes
0x12 0x9 0x3 no
0x13 0x0 0x2 no
0x15 0x5 0x3 yes
0x16 Oxd 0x3 yes
0x17 Ox4 0x2 yes
0x19 0x3 0x1 no
Ox1a Oxb 0x1 no
Ox1b 0x1 0x3 no
Ox1d Ox7 0x1 yes
Ox1e Oxf 0x1 yes

Sanwa/Airtronics PCM2 (6 proportional channels, 9 bits)

Phase1:
——————— H LH LH L -
syncl Chb5 Chl Ch2 end
Phase 2
-H LH LH L-—---- -
syncz2 Ché Ch3 Ch4 end

Description: we have two phases, 3 channels each: phase1 is introduced by the
syncronization sequence sync1 (7 bit high, 1 low), then 3 channels data (20 bits each),
then the end sequence (6 bits low, 1 high); phase2 is introduced by sync2 (7 bit low, 1
high), then 3 channels data (20 bits each), then the end sequence (6 bits high, 1 low).

Details:
e bit widht: 0.3ms

e code pattern: 1 or 2 bits pulses allowed for data:
o 1 bit pulse =1
® 2 bit pulse = 10

examples:
° - = 10110
° -— - = 10110 (same as above)
e - - - =11111
° -— - = 10101

e channel decoding: every data packet is 20 bits (5 quartets):
[} ChX (20bits): H==LH==LH==LH==LH==L
quartet 5 4 3 2 1

L] quartets 5, 4, 3, 2 and 1 are decoded into 5 corresponding duplets referring to
decoding table below; for quartet 1 the value to use is the one obtained by clearing
the two least significant bits of the quartet (quartetl & 0x0Oc); quartet values not
listed in the table are invalid.

L] decoded ChX (10bits, but msbit = 0): HLHLHLHLHL
duplet 1 2 3 4 5

note that the duplets order in decoded ChX is inverted respect to corresponding

quartets order of 20 bits ChX; note also that decoded ChX is 10 bits but the most
significant bit is always 0 (looking at the table we can see that duplets relative
to (quartetl & 0x0Oc) have a maximum value of 1) so it's really 9bits (512 points).

Sanwa/Airtronics PCM2 decoding table

quartet value duplet value
0x04 0x0
0x05 0x0
0x07 0x2
0x0c 0x1
0x0d 0x1
OxOf 0x3

Futaba PCM 1024 (8 proportional , 10 bits + 2 on/off channels)

frame1:
<---syncl---><----- packetl----- ><————— packet2----- ><————— packet3----- ><————— packetd----- >
18 bits pulse Chl absolute Ch3 absolute Ch5 absolute Ch7 absolute
+ 000000 Ch2 delta Ch4 delta Ché6 delta Ch8 delta
BFS reset bit Ch9 bit
frame2:
<---sync2---><-----— packetl----- ><————= packet2----- ><————= packet3----- ><————= packetd----- >
18 bits pulse Ch2 absolute Ch4 absolute Ch6 absolute Ch8 absolute
+ 000011** Chl delta Ch3 delta Ch5 delta Ch7 delta
Chl0 bit

Description: we have two frames: frame1 is introduced by sync1 packet: 18 bits pulse + 6
bits low; frame2 by sync2: 18 bits pulse + 8 bits, the first six = 000011 (last2 ignored).
Every 2 frames all bits of the frames are inverted; than the firmware does not care of level:
it simply toggles bit level after every pulse received, beginning with 0 after sync pulse.

Details:
e bit widht: 0.15ms

e 6b10b encoding: every frame packet is composed by 40 bits but once decoded it
is only 24 bits long; for every 10 bit we have to apply the 10b6b decoding table

below to obtain 6 bits of data (10b values not listed are illegal):

<emmmmmmm e encoded packet (40b)----------------——- >
<===-= 10b----- ><————- 10b----- ><————- 10b----- ><——-—- 10b----- >
10béb \ \ / /
decoding \ \ / /
<-=6b---><--6b---><--6b---><--6b--->
<————=—= decoded packet (24b)-—------ >

e packet format: each 24 bits decoded packet has the following format:

<mmmmmmm e decoded packet (24b)----------—--—---—————————— >
<-2b-><-—---4b-—--><-—————-————— 10b-—-—=——-—————~ S<—mm e 8- >
aux delta absolute checksum

e aux bits: each packet contains 2 aux bits, for a total of 8 aux bits for each frame1
and frame2; depending on the packet and frame they have the following meanings:

framel, packetl 2 aux bits: Frame ID
framel, packet?2
framel, packet3
framel, packetd
frame2, packetl

aux bits: Frame ID
aux bits: msb = ?; 1lsb = Ch9 bit
aux bits: Frame ID

frame2, packet2 aux bits: msb = ?; 1lsb = Chl0 bit
frame2, packet3 aux bits: Frame ID
frame2, packet4 2 aux bits: msb = ?; 1lsb

Frame ID specify the frame type:
e 2:normal frames: almost all frames are normal frames

2
2
2
2
2
2

?

frame Frame ID packetl packet?2 packet3 packet4d
framel 2 chl AN ch2 D ch3 AN ch4 D ch5 AN ché6 D ch7 AN ch8 D
frame2 2 ch2 AN chl D ch4 AN ch3 D ch6 AN ch5 D ch8 AN ch7 D

(A=absolute N=normal D=delta)

aux bits: msb = ?; lsb = Battery Fail Safe (BFS) reset condition

e 0, 1: failsafe frames: every some ten of seconds a quartet of frames is sent

to transmit the failsafe values to use for each proportional channel:

frame Frame ID packet1 packet2 packet3 packet4

frame1 0 ch1 AF ch2 D ch3 AN ch4 D ch5 AF ch6é D ch7 AN ch8 D
frame2 O ch2 AF ch1 D ch4 AN ch3 D ch6é AF ch5 D ch8 AN ch7 D
frame1 1 ch1 AN ch2 D ch3 AF ch4 D ch5 AN ch6 D ch7 AF ch8 D
frame2 1 ch2 AN ch1 D ch4 AF ch3 D ch6 AN ch5 D ch8 AF ch7 D

(A=absolute N=normal F=failsafe D=delta)

the first 2 failsafe frames have Frame ID = 0, the last 2 have Frame ID = 1;
inside failsafe frames delta values continue to be sent normally, while
absolute values alternate from failsafe and normal depending on channel and
frame as described in the scheme above.
BFS (Battery Fail Safe) reset condition can be programmed in quite a few ways: it
can be set for low throttle or high throttle; it can also be set to any stick or switch.

absolute and delta: each frame contains absolute 10 bits values of 4 proportional
channels and 4 bits delta codes for the remaining 4 proportional channels: for each
channel the absolute value is sent in a frame but only 4 bits delta code in the
following one for steering servo toward target position with a good approximation
given by the formula:

channel = absolute + delta_value[delta_code]
For each delta_code we have to find the corresponding delta_value. The table
below reports the delta codes sent by TX depending on real delta value (differences
from preceding and current absolute values); it is based on infos found on the net
and derived by experiments:

real delta value delta code sent
<= -116 0x0
-115 ... -88 0x1
-87 ... -64 0x2
-63 ... -44 0x3
-43 ... -28 0x4
-27 ... -1l6 0x5
-15 ... -8 0x6
=7 R 0x7
-3 ... 4 0x8
5 ... 8 0x9
9 ... 1o Oxa
17 ... 28 0xb
29 ... 44 Oxc
45 ... o4 0xd
65 ... 87 Oxe
>= 88 Oxf

obviously the receiver cannot go back to the real delta value from the 4 bits only
delta code received: the best it could do is to approximate it for minimizing error:
this can be achieved by choosing the average value for each real delta value range;
anyway this is what the firmware does:

delta code delta value
0x0: -132
0x1: -102
0x2: =76
0x3: -54
0x4: -36
0x5: =22
0x6: -12
0x7: -6
0x8: 0
0x9: 6
Oxa: 12
Oxb: 22
Oxc: 36
0xd: 54
Oxe: 76
Oxf: 102

values for 0x0 and Oxf (very rare anyway) are simply extrapolated from the
progression instead of calculated as average value of its range: the relative interval
in this case is very large, than in our opinion it is preferable here to risk a greater
error than a very large servo overshoot (steer the servo too much over the target).

checksum: it seems that Futaba uses a single bit ECC (Error Correction Code): it
allows detection of wrong packets and correction in case of one bit error. How it
works: it uses a checksum 8 bits register initialized with 0; the 16 most significant

bits of each packet (bits 23 to 8) are scanned and for each bit = 1 a xor (exclusive
or) operation is computed between the value in the checksum register and the
number corresponding to that bit according to the list below:

bit23: 0x4a
bit22: 0x25
bit21: Oxa’7
bit20: 0xeb
bitl9: 0x73
bitl8: 0x8c
bitl7: 0x46
bitlé6: 0x23
bitl5: Oxad
bitl4: 0x52
bitl3: 0x29
bitl2: Oxal
bitll: Oxeb5
bitl0: 0xc7
bit9: 0xd6
bit8: 0x6b

In other words: checksum = (bit23 * num_bit23) xor xor (bit8 * num_bit8)

The transmitter computes the checksum of 16 msbits of each packet using this
formula and send it inside its checksum field. The receiver (and also this firmware)
recompute the checksum on the received 16 msbits and do a xor between
recomputed value and the received one: if the result is 0 (recomputed and received
are identical) it means that very probably there is no error; if the result is one of the
values in the list above it means that certainly there is an error but only the
corresponding bit is wrong (unless the very rare case of at least 3 bits wrong: infact
if only two bits are wrong the result would be the xor between the two relative
values but these are choosen to never give any of the other values as a result of a
xor between two only values), so we could simply toggle that bit and we are almost
certain to have the error corrected; if the result is any other value it means that the
packet is certainly wrong and should be discarded because at least 2 bits are wrong
and we can't do anything to correct it.

Futaba 10b6b decoding table

10b 6b
0x007 0x3F
0x00C 0x3E
0x00F 0x27
0x018 0x3C
0x01C 0x3D
0x01F 0x26
0x030 0x3A
0x033 0x2B
0x038 0x3B
0x03C 0x30
0x03F 0x0A
0x060 0x38
0x063 0x2A
0x067 0x22
0x070 0x39
0x073 0x21
0x078 0x31
0x07C 0x25
0x07F 0x09
0x0CO0 0x34
0x0C3 0x29
0x0C7 0x20
0x0CC 0x28
0x0CF 0x13
0xO0EO 0x33
0xOE3 0x23
0xOE7 0x12
0x0F0 0x32
0x0F3 Ox11
0x0F8 0x24
0x0FC 0x10
0xO0FF 0x08

10b 6b
0x300 0x37
0x303 0x2F
0x307 0x1B
0x30C 0x2E
0x30F 0x0D
0x318 0x2D
0x31C 0x1C
0x31F 0x0C
0x330 0x2C
0x333 0x17
0x338 Ox1F
0x33C 0x16
0x33F 0x0B
0x380 0x36
0x383 Ox1A
0x387 0x0E
0x38C Ox1E
0x38F 0x06
0x398 0x1D
0x39C 0x15
0x39F 0x07
0x3C0 0x35
0x3C3 0xOF
0x3C7 0x04
0x3CC Ox14
0x3CF 0x05
0x3E0 0x19
0x3E3 0x02
0x3E7 0x03
0x3F0 0x18
0x3F3 0x01
0x3F8 0x00

OS SUPPORT

Windows

Interface developed and tested on Windows XP but should work also on Windows 98 and
above. set_assignments and get_assignments utility are compiled linking them against
LibUSB-Win32 (http://libusb-win32.sourceforge.net/); we provide the binaries in the
software package; they require LibUSB-Win32 filter driver (included in the package the
version which it has been compiled for).

Linux

We have tested the interface with linux and seems to work perfectly. set_assignments and
get_assignments utilities share the same source with Windows but are compiled linking
them against libusb (from which LibUSB-Win32 is derived); we provide the binaries in the
software package; they require libusb installed in your system.

FreeBSD, NetBSD, OpenBSD, Darwin/MacOSX

As an HID Joystick device RC Joystick NG? should work ok also on these OS but we have
not tested it yet. These OS are all supported by libusb so the utilities set_assignments and
get_assignments should be smoothly ported on them; but we have not tried it yet so the
binaries are not included in the software package.

http://libusb-win32.sourceforge.net/

