Как посчитать шаг импеллера?

a_centaurus
Валентин:

Вы не знаете, когда наступает срыв потока на лопасти в импеллере? Есть ли методика расчета?

В общем и целом тогда же, когда и в простом пропеллере… Вам надо начать именно с теории пропеллера, поскольку ducted fan - это частный случай многолопастного п. Теория п. достаточно хорошо прописана в советских учебниках по аэродинамике. А вот теории DF что-то не припоминается. Есть огромная библиография по расчётам насосов, но там другая среда и другие физические феномены (кавитация). В англоязычной литературе теория DF хорошо прописана, вплоть до модельного уровня. Могу дать ссылки или просто выложить из моего архива. Например, в прекрасной книге “Model Aircraft Aerodynamics” есть хорошо иллюстрированная глава Теория Пропеллера с заключительной темкой именно о DF. Но с преамбулой, что это сложно и здесь не рассматривается, хотя основные моменты теории списаны именно с 2-х лопастного случая простого п. Из доступного в архиве есть пара обзорных статей на тему моделирования DF UAV Theory O.J.Ohanian (набить в Google). В них теория DF изложена на вполне доступном тех. eng. Есть, в том числе, и расчёты эффективности DF в зависимости от угла pitch от которого, собственно и зависит скорость потока и распределение эпюр давления на лопатке. Надо внимательно почитать и посмотрть таблицы и, я думаю, какой-то алгоритм расчёта критических параметров, приводящих к срыву потока на лопатке, обязательно проклюнется.

a_centaurus
a_centaurus:

Вам надо начать именно с теории пропеллера

Собственно, все прописано в этой книге: “Основы теории крыльев и винта”, Г. Глауэрт, 1931. Tеория винта изложена и как частный случай может приложена к ветряку и вентилятору (импеллер). “Добрые” советские дяди уже перевели её для Вас. Вот здесь можете её забрать:

www.dropbox.com/s/…/Main_rotor%26wing.djvu?dl=0

А в простейшем выражении: Vtip blade =pi x D x n </= 250 m/s (avg. sound velocity).

a_centaurus

www.dropbox.com/s/…/Propellery.djvu?dl=0

А здесь наиболее полная версия на русском:“Воздушные винты”, Александрова. 1951. С такой разложенной по полочкам прикладной теорией можно построить весьма качественный импеллер. Успехов.

a_centaurus

На печать времени уходит немного, а вот на доработку… За рабочую неделю, по вечерам, удалось доработать 5 лопаток. В основном, использовались бархатные ювелирные надфили, Dremel с насадками (вплоть до фетра с пастой), гладилка (штихель для дерева) и губки с абразивом. После механической обработки напылялся полиуретановый фон (Rust Oleum) с последующей шлифовкой и новым напылением. Ступица и спиннер были рассверленына станке до рабочего диаметра 6 мм и склеены цианакрилом. затем шпаклёвка в аэрозоле. После доработки всех напечатанных лопаток, импеллер будет собран и проточен на токарном станке для получения опимальной центровки на оси.

ДедЮз
a_centaurus:

www.dropbox.com/s/…/Propellery.djvu?dl=0

А здесь наиболее полная версия на русском:“Воздушные винты”, Александрова. 1951. С такой разложенной по полочкам прикладной теорией можно построить весьма качественный импеллер. Успехов.

Не открывается, не смотря на все советы в программе “Акробат”???

Валентин
a_centaurus:

На печать времени уходит немного, а вот на доработку

У меня вот почему то при печати высоких и тонких моделей, трескается по слоям.

Ширину лопасти есть толк делать большой? или как у пропеллера процентов 8 делать от диаметра?

a_centaurus
ДедЮз:

в программе “Акробат”???

Иосиф!
Книга в формате DjVu. Вам надо установить DjVu reader и книга откроется автоматом. Успехов и здоровья.

Валентин:

почему то при печати

Если Вы внимательно читали мои посты о технологии печати единичной лопатки, то должны были обратить внимание на результаты качество vs. printing position. Лопасть ДОЛЖНА печататься лёжа. А основание - стоя. Тогда сопряжение основание - ступица будут иметь удовлетворительное разрешение, а лопатка удовлетворительную прочность вдоль главной оси. Но качество поверхности после печати будет низким и требует доработки (со шпаклёвкой). В случае большой детали это совсем не сложно, надо только иметь шаблоны и следить за весом. Но это плата за возможность полукустарного индивидуального производства детали со сложной геометрией. Кстати, импеллеры для турбин, в основном дорабатывают на CNC из отливок, покупая готовые заготовки, чтобы не тратить время и деньги на стружку. Вопрос о геометрической форме лопасти следует увязывать с расчётной моделью имп.(вентилятора), а не сравнением с пропеллером.
У них разные задачи. Ширина лопатки, и-в, например, напрямую связана с эффективностью пропускания потока между соседними лопатками. Посмотрите на свой и. сбоку и Вы увидите и поймёте как ширина (и угол установки) лопатки влияет на создание щели-туннеля, в котором разгоняется поток. А пропеллер ведь работает в свободном потоке.

P.S. А вообще, именно умение оптимизировать дизайн детали и настройки принтера для получения удовлетворительного соотношения: качество-прочность и отделяет простого пользователя 3D принтера, печатающего в основном с чужих stl, от грамотного проектировщика (digital 3D print prototyping) и опытного оператора печатающей машины. В идеале надо стремиться к совмещению этох функций. На дистанции, не зная ни вашего дизайна, ни принтера, ни програмы slicer, которой Вы пользуетесь, ни материала из которого печатаете (ABS?) трудно дать совет. Вам бы, по-хорошему, нужно было открыть тему о разработке такой ВМУ на базе 3D printing. И начать с проектной части с увязкой её с технологией изготовления. Это как хлеб печь. Вроде у всех мука, дрожжи, вода и печь, а хлеб разный получается.

IgorG
a_centaurus:

После доработки всех напечатанных лопаток, импеллер будет собран …

Лопатки к ступице будут приклеиваться? Если не секрет, каким клеем пользуетесь для этого?

a_centaurus
IgorG:

Лопатки к ступице будут приклеиваться? Если не секрет, каким клеем пользуетесь для этого?

Нет секретов. Проект не коммерческий, поэтому делюсь всем, что может быть полезным для других. В этом идея всех форумов. Использую для склейки/блокировки деталий из печатных материалов аргентинскую версию (US Dupon, естественно) цианакриловой композиции: “La Gotita”. Прочность на разрыв/отрыв склейки сравнима с прочностью материала. На PLA возможна расклейка плоского шва ацетоном. Для ABS нужно убедиться в отсутствии ошибок, поскольку склейка неразьёмна. Лопатки устанавливаются по достаточно плотной посадке типа “ласточкин хвост”. На рисунке хорошо видна геометрия стыка. При печати: “основание вверх, лопатка горизонтально” и правильно выбранных допусках на печать соединений, такая геометрия легко реализуется с лёгкой доводкой сборочных поверхностей надфилем.

a_centaurus

Несколько фоток, чтобы закрыть стихийно образовавшуюся ветку в этой темке: “совсем не об этом”. 8-и лопастной импеллер сборной конструкции закончен. Лопатки, ступица, спиннер были отпечатаны (ABS), доработаны (со шпаклёвкой) и собраны на цианакриле. Готовый ротор покрывался фоном и чёрным тоном (Rust Oleum). Установлен через переходник (дюраль) на ось мотора. Когда будет время, испытаю сборку на стенде. stl files могу выложить. Dixi.

Валентин
a_centaurus:

Несколько фоток, чтобы закрыть стихийно образовавшуюся ветку в этой темке: “совсем не об этом”. 8-и лопастной импеллер сборной конструкции закончен. Лопатки, ступица, спиннер были отпечатаны (ABS), доработаны (со шпаклёвкой) и собраны на цианакриле. Готовый ротор покрывался фоном и чёрным тоном (Rust Oleum). Установлен через переходник (дюраль) на ось мотора. Когда будет время, испытаю сборку на стенде. stl files могу выложить. Dixi.

Шаг лопастей какой то маленький ) тяга будет не очень.

a_centaurus
Валентин:

Шаг лопастей какой то маленький ) тяга будет не очень.

Шаг (крутка) лопасти выбирается в соответствии с мощностью мотора и его kv. И в теории EDF угол верхней части выбирается обычно около 30-32º. Что и было реализовано в данной конструкции. Есть эмпирический график с наилучшими значениями угла, который показывает лучшую эффективности крутки лопатки именно в этом диапазоне. Если вы угол увеличите, то будет турбулентное торможение потока, если уменьшите, холостая работа лопатки. А тяга есть производная от многих переменных. Когда Вы дойдёте в своей конструкции до замера тяга vs. хххх, то убедитесь в справедливости этого утверждения. Надеюсь, что Вы нас порадуете результатами.

ДедЮз
a_centaurus:

Шаг (крутка) лопасти выбирается в соответствии с мощностью мотора и его kv. И в теории EDF угол верхней части выбирается обычно около 30-32º. Что и было реализовано в данной конструкции. Есть эмпирический график с наилучшими значениями угла, который показывает лучшую эффективности крутки лопатки именно в этом диапазоне. Если вы угол увеличите, то будет турбулентное торможение потока, если уменьшите, холостая работа лопатки. А тяга есть производная от многих переменных. Когда Вы дойдёте в своей конструкции до замера тяга vs. хххх, то убедитесь в справедливости этого утверждения. Надеюсь, что Вы нас порадуете результатами.

Большая ошибка не “привязывать” шаг (угол установки сечения) к оборотам при номинальной мощности. В зависимости от коэффициента перекрытия эффективность лопасти можно увеличить применяя переменный шаг. Имеет значение и выбранный профиль с значениями рабочих углов атаки зависящих от местных Re.

a_centaurus
ДедЮз:

Большая ошибка…

Estimado Jose!
В вентиляторах (импеллерах) так и делается (так сделано и на этой модели, естественно). Pitch - величина переменная. У корня лопатки (можно видеть на scrin shot Solid Works) угол атаки ок. 42º , а на излёте кромка повёрнута уже на 32º. Если бы этого не было лопатка бы не разгоняла поток, приходящий от корня (где скорость его минимальная). А это, согласитесь, немалая часть общего п. Профиль лопатки также был выбран из подобия с аналогичным коммерческим известного производителя. Ну и последнее, прежде чем приступить к дизайну, автор всенепременно изучил вопрос на всех уровнях. Все предыдущие модели EDF собственной конструкции показали вполне стандартную эффективность, хорошо кореллирующуюся с теорией и результатами коммерческих аналогов. Saludos!

ДедЮз
a_centaurus:

Estimado Jose!
В вентиляторах (импеллерах) так и делается (так сделано и на этой модели, естественно). Pitch - величина переменная. У корня лопатки (можно видеть на scrin shot Solid Works) угол атаки ок. 42º , а на излёте кромка повёрнута уже на 32º. Если бы этого не было лопатка бы не разгоняла поток, приходящий от корня (где скорость его минимальная). А это, согласитесь, немалая часть общего п. Профиль лопатки также был выбран из подобия с аналогичным коммерческим известного производителя. Ну и последнее, прежде чем приступить к дизайну, автор всенепременно изучил вопрос на всех уровнях. Все предыдущие модели EDF собственной конструкции показали вполне стандартную эффективность, хорошо кореллирующуюся с теорией и результатами коммерческих аналогов. Saludos!

Похоже, мы говорим на разных языках. Углы атаки в 42 и 32 градуса можно “считать” при НУЛЕВОЙ скорости набегающего потока, а эффективным углом атаки является угол между местными хордами лопасти и вектором движения потока. Тот угол который создает динамическую тягу (не путать со статической).

a_centaurus
ДедЮз:

Похоже, мы говорим на разных языках.

О да. На разных. Не смотря на родную нам всем кириллицу. Я, на языке конструктора, который создаёт (и создал) некое конкретное изделие… И предложил живой опыт и технологию другому, который пытается создать нечто похожее. Как говориться в армиях мира:“делай как я, а не хочешь …”. О технических характеристиках моего импеллера мы здесь дискутировать не будем. Нет ни повода, ни желания. Советую подождать результатов конкретной работы topicstarter и тогда уже разобрать его по косточкам. Если он конечно подставится. В чём я сильно сомневаюсь. Кстати, настоятельно рекомендую попробовать прорисовать подобную сборку и выложить на суд общественности то, что у вас получится. И вы увидите, как легко получить порцию критики. По готовому ведь все специалисты. Не так ли? Засим, Adios!

ДедЮз
a_centaurus:

О да.

Честно, импеллерами не занимался, приходилось считать и проектировать вентиляторы для разных АД труб (с 1; 2,5; 4,5 м.кв. раб.зонами) и пропеллеры - от модельных скоростных однолопастных до 2,5 метровых для высотных беспилотников. Теория импеллеров у меня есть, довольно емкий труд, но за отсутствием времени и потребности, просматривал вскольз.

6 months later
msl_272

К сожалению, ссылки на теорию выложенные выше уже не работают. Мне хотелось бы более подробно изучить влияние шага и числа лопастей ротора на скоростной напор.
Был хороший труд “Теория импеллера”, но сайт с ним сдох. Попадаются только отрывки этой статьи.
Если у кого есть ссылки, положите здесь.

a_centaurus
msl_272:

на скоростной напор.

Я Вам выкладывал необходимые материалы из своих архивов в dropbox. Как правило делаю это на 2-3 дня. А Вы возвращаетесь к теме через несколько месяцев. Увы. На последних страницах есть элементарная теория пропеллера и лопасти в потоке. А также вентилятора, ветряка, ветрянки. Импеллер - вентилятор. Прямой формулы на зависимость поступи лопатки от скоростного напора не просматривается, но очевидно можно её вывести на базе имеющихся расчётных характеристик. Попробуйте. Ещё можно посмотрть в теории центробежных и лопаточных насосов. www.dropbox.com/s/…/Main_rotor%26wing.djvu?dl=0

EVIL
msl_272:

“Теория импеллера”,

Когда-то читал. Там всего понамешано, что не только не приводит к систематизации знаний, но и противоречит природе работы импеллера. Поизучайте свойства канальных вентиляторов, коими являются импеллеры и куча вопросов отпадет.