баян, но какой! Для тех, кто устал от "задачи про самолет".

chabapok

------
блин ГДЕ АФТАР???
------
аффтар - неизвестно где. (аффтар жжот, пейши ысчо!)
Это придумал не я. Я только запостил.

------
скажи плз уже правильный ответ!!!
------
Даже не знаю пришло ли время говорить правильный ответ.
Думаю - пришло. Тем более, что он тут уже прозвучал от Gold и от Creator, и я принципиально нового уже не скажу.

Вообще, практика показывает, что все в итоге признают, что ни о каком 50 на 50 речи быть не может. Если меняем - 2/3, если не меняем - 1/3. Просто некоторые это признают спустя 3 месяца (это мне говорили). Я видел максимум неделю. Сам я понял в чем фишка гдето за два дня 😃

Основная ошибка состоит в том, что все решают, что смена выбора эквивалентна новому выбору. На самом деле, как ни парадоксально, это совершенно разные вещи. Эту задачу можно проверить перебором, можно написать программу (только именно такую в которой будет смена выбора а не новый выбор - это принципиально)

Тем, кто еще не понял я бы посоветовал внимательней почитать рассуждения правильно ответивших - там уже все сказано. Если не помогло - смоделировать ситуацию.

А почему не так - вам предлагают угадать число от 1 до 1000000, после вашего выбора убирают 1 заведомо неверный ответ и предлагают поменяться на любой из оставшихся 999998. Вероятность угадывания верного из оставшихся вариантов, включая первоначально выбранный, одинакова и равна 1 к 999999

Что значит “одинакова”? С чем она одинакова?

Ваш пример, даже в таком переделаном виде, только подтверждает, что менять(или не менять) не есть выбирать заново! Когда он брал одну из 1000000 шкатулок, то вероятность была 1 к 1000000. И если у нас эта же шкатулка осталась - вероятность такой и будет (от того что с оставшимися помухлевали, ничего не изменится). А если мы выбираем по новой, вероятность будет 1 к 999999, что не равно 1/1000000. Видите - вероятность не одинакова! 😃

YuriyDnepr
chabapok:

что менять(или не менять) не есть выбирать заново

Согласен

mikkap
SAN:

Когда вы выбираете из 3х - ваш шанс = 1\3
После удаления одной, заведомо пустой, коробки - ваш шанс = 1\2
НЕзависимо от вас.

Проверил на компутере. Действительно, выгоднее поменять выбор. Вероятность угадать - 2/3. Хотя “логика” подсказывает обратное…

Vini

выглядит это так, похоже…
делим три шкатулки на 2 неравные кучки (2 и 1)
вероятность что полной будет одна из двух шкатулок - 2/3 (большая кучка)
что будет полной одна шкатулка - 1/3
одну из двух шкатулок (пустую) нам открывают, но вероятность в 2/3 там остается, так что если махнемся, то поменяет 1/3 на 2/3
наверное так надо объяснить?

chabapok

--------buldog----
Вот! Я ж сразу сказал - менять!
--------
да, но указали не ту вероятность. 50 на 50 это конечно выше чем 1 к 3, но все равно не правильно. 😃

Vini:

выглядит это так, похоже…
делим три шкатулки на 2 неравные кучки (2 и 1)
вероятность что полной будет одна из двух шкатулок - 2/3 (большая кучка)
что будет полной одна шкатулка - 1/3
одну из двух шкатулок (пустую) нам открывают, но вероятность в 2/3 там остается, так что если махнемся, то поменяет 1/3 на 2/3
наверное так надо объяснить?

Можно и так. Разным людям очевидно разное обьяснение. Ваше обьяснение уже было:
--------gold------
фактически это то же самое, как если бы ведущий предложил поменять ваш выбор одной шкатулки на выбор сразу двух других вместо одной ничего не открывая.
-------------------

Практика показала, что далеко не все это поняли. 😮
А может просто невнимательно читали.

Vini

Да, не все понимают, это точно, поэтому я решил попробовать свое подробное объяснение тоже к теме прилепить. Вдруг кому поможет =)

mikkap
SAN:

После удаления одной, заведомо пустой, коробки - ваш шанс = 1\2
НЕзависимо от вас.

НЕзависимо от меня, но зависимо от ведущего, который открывает заведомо пустую коробку. Если бы ведущий открывал коробку случайно и при попадании на шарик следовала бы переигровка, то вероятность действительно становилась бы 1/2.

Дмика

Я думаю ничего не изменится т.к. ведущий всегда убтрает пустую коробку соответственно вы всегда выбираете из 2-х.

boroda_de

Господа!
Наберите в яндексе ТВиМС и будет вам щастье (или головная боль)
Для затравки: по ТВиМС вероятность того что например при игре в кости выпадет скажем шестёрка считается по ДВУМ разным формулам:
одна для вероятности перед броском, одна после… 😠

chabapok
Дмика:

Я думаю ничего не изменится т.к. ведущий всегда убтрает пустую коробку соответственно вы всегда выбираете из 2-х.

А проверить на компе слабо?

Constantine
mikkap:

Проверил на компутере. Действительно, выгоднее поменять выбор. Вероятность угадать - 2/3. Хотя “логика” подсказывает обратное…

смешно!

  1. у вас есть ДВЕ шкатулки, и вам предлагают выбрать одну из них! 😃
  2. затем ведущий достает из кармана третью и говорит что она пустая и спрашивает - а не хотите ли вы выбрать еще раз? 😎

и вы кидаясь к компьютеру говорите - АГААААА ДАВАЙ, ВЕРОЯТНОСТЬ ПОВЫШАЕТСЯ!!! ЕЩЕ НЕМНОГО И совсем повысится 😃

выбросите компьютер, думайте своим биологическим)))
а на компьютере - только в интернет, по бабам, чертежи, и детальные расчеты методами конечных элементов!!!

YuriyDnepr

Есть три возможных равновероятных варианта расклада:

1 0 0
0 1 0
0 0 1

Выбираем любую из шкатулок, скажем, первую.

1 0 0 выиграли
0 1 0 проиграли
0 0 1 проиграли

Вероятность выиграть 1/3.

Теперь попробуем согласиться на предложенные условия - удаление заведомо пустой шкатулки и замену первоначально выбранной на оставшуюся:

1 0 0 проиграли
0 1 0 выиграли
0 0 1 выиграли

Вероятность выиграть 2/3, т.е. вдвое выше первоначальной.

Gold
Constantine:

смешно!

  1. у вас есть ДВЕ шкатулки, и вам предлагают выбрать одну из них! 😃
  2. затем ведущий достает из кармана третью и говорит что она пустая и спрашивает - а не хотите ли вы выбрать еще раз? 😎

неверно упрощенное условие. потому-что в тот момент когда вы выбираете, у вас выбор не из двух а из трех.

давайте все-таки на математику условие переведем

вы указали на одну шкатулку из трех. вероятность нахождения в ней приза = 1/3
ведущий указал на одну шкатулку. вероятность нахождения в ней приза = 0
спрашивается какова вероятность нахождения приза в третьей шкатулке?

именно действие ведущего после вашего выбора изменяет вероятность нахождения приза в третьей шкатулки
------------------

или попробуем провести следующий эксперимент. допустим приз всегда в первой шкатулке, а вы выбираете по очереди 1,2,3,1,2,3… A - выбранная вами, B - вскрывается ведущим, ? - оставшаяся

A ? B - вы выбрали первую, при замене проигрываете
? A B - вы выбрали вторую, при замене выигрываете
? B A - вы выбрали третью, при замене выигрываете
дальше по циклу

Constantine

а знаете что…
а я туплю блин!

значит так.
вытащить правильную шкатулку можно с вероятностью 1/3
значит как бы мы не выбирали, мы полюбому будем получать эту вероятность

потому что:

после того, как мы, дернули нашу шкатулку там приз с вероятностью в треть далее убирается заведомо неверная шкатулка, и остается ваша и еще одна.

я это к чему,
вероятности нахождения приза в ВАШЕЙ шкатулке - одна треть
вероятность нахождения приза в ВТОРОЙ шкатулке равна вероятности нахождения приза в ВАШЕЙ шкатулке?

да! равна!

следовательно
КАКОЙ смысл менять шкатулку? если вероятность нахождения приза во второй шкатулке совершенно одинакова с вероятностью нахождения приза в вашей! И ОТ ВАШЕГО ВЫБОРА ПОМЕНЯТЬ ИЛИ НЕТ НИЧЕГОШЕНЬКИ НЕ ПОМЕНЯЕТСЯ.
И ХВАТИТ ПЕРЕБИРАТЬ! ВОТ!

ВО! 😈

IP
Constantine:

И ОТ ВАШЕГО ВЫБОРА ПОМЕНЯТЬ ИЛИ НЕТ НИЧЕГОШЕНЬКИ НЕ ПОМЕНЯЕТСЯ.
И ХВАТИТ ПЕРЕБИРАТЬ! ВОТ!

ВО! 😈

У нас есть три шкатулки и два игрока. Первый игрок берет произвольную шкатулка а второй забирает две оставшиеся. Вопрос N1 : кто будет чаще получать приз первый или второй? Вопрос номер 2 : вопрос номер два : если у второго игрока добрый ведущий будет забирать шкатулку в которой заведомо ничего нет, станет ли первый игрок выигрывать чаще? Вопрос номер 3 : не захочет ли первый игрок поменяться местами с вторым? 😈

chabapok

да! равна!

Таки нет. 😃 Почему? Да очень просто. Вы задумайтесь - что значт “ВТОРОЙ” и как она, эта “ВТОРАЯ” получается из трех имеющихся.

А получается что “ВТОРАЯ” - это на самом деле ДВЕ ОСТАВШИХСЯ.

Задумайтесь - в чем принципиальная разница? Либо вы выбираете одну шкатулку после откидывания неверной. Либо вы выбираете две шкатулки(и при этом одну неверную сами откидываете).
Какие вероятности будут в этих двух случаях, в чем их принципиальное отличие и почему?

Ну и наконец, можно попросить товарища и провести с ним сотню экспериментов. Только моделировать нужно именно как в условии - либо менять либо неменять, а не выбирать заново. Это принципиально.

И еще. Вы не думали что в сумме всех возможных событий (а у нас их два - менять и не менять) вероятность должна получится равной 1? Если мы не меняем, то вероятность 1/3 (это вы сами писали). Значит когда меняем - оставшаяся.

А вообще в теории есть такая штука - полная вероятность. Блин! Это же интуитивная задача. Не хотел залазить, но прийдется. (в упрощенной форме) Может кому-то поможет понять, если нет - пролистают.

У нас есть вероятности событий Н1, Н2… Если нам так же известны вероятности События А при условии исполнения событий Н1, Н2…
То:
Вероятность испольнения события А БЕЗ учета событий н1 н2 н3 равна

вероятность А =
(вероятность исполнения А при условии исполнения Н1) * (вероятность исполнения Н1) +
(вероятность исполнения А при условии исполнения Н2) * (вероятность исполнения Н2)
----------
Это общая формула которую можно найти в любом учебнике. Она справедлива, если у нас есть сколько угодно событий Н3, Н4 (в этом случае добавляются аналогичные строки)…
Я ее упростил чтоб не парить мозги.
При желании вы можете поднять литературу и проверить правильно ли это написано.

“Вероятность А” - вероятность, того, что изменив выбор будет шкатулка с призом. Ее мы сейчас будем считать по этой формуле.
Смотрим, что нам известно (возражения к каждому пункту принимаются если таковые будут):
-----------------------

  1. У нас событие Н1 - первоначально выбрана полная шкатулка.
    Вероятность исполнения Н1 = 1/3
    Возражения есть?

  2. Событие Н2 - первоначально выбрана пустая шкатулка.
    Вероятность исполнения события Н2 = 2/3.
    Возражения есть?

  3. Если мы выбрали полную, то ежу ясно, что при смене мы выберем пустую. То есть,
    “вероятность исполнения А при условии исполнения Н1” = 0.
    Возражения есть?

  4. При свершении Н2, то есть если мы выбрали сначала пустую шкатулку, то (ВНИМАНИЕ!) ведущий удалит еще одну пустую шкатулку. И тогда мы поменяем на полную!
    “вероятность исполнения А при условии исполнения Н2” = 1
    Возражения есть?
    ---------------
    То есть у нас есть все для того, чтобы посчитать вероятность А. Если из пункта 4 еще не очевидно, то подставляем эти числа в формулу:

А = 0 * (1/3) +
1 * (2/3)
= 2/3

Домашнее задание 😃

  1. посчитать вероятность того, что у нас будет приз если мы НЕ меняем шкатулку. Считать по этой формуле. Очевидно, что если у нас осталась первоначально выбраная, то и вероятность будет 1/3, но вы посчитайте по формуле - по идее в итоге вы должны прийти к этому результату.

  2. посчитать вероятность того, что у нас будет приз, если ведущий убирает одну из двух шкатулок наугад неоткрывая, а мы после этого еще и меняем шкатулку. (это для тех, кто всегда хочет большего. Хехе. %)

А вообще не парьтесь. Читайте внимательней предыдущие посты. 😃

wwm
chabapok:
  1. При свершении Н2, то есть если мы выбрали сначала пустую шкатулку, то (ВНИМАНИЕ!) ведущий удалит еще одну пустую шкатулку. И тогда мы поменяем на полную!

Ошибка - слово ЕЩЕ.

KSB

Такая же примерно задачка:

10 раз подряд кидаем игральный кубик
10 раз подряд выпадает шестерка
кидаем одиннадцатый раз
какова вероятность что выпадет шестерка

YuriyDnepr
KSB:

Такая же примерно задачка:

10 раз подряд кидаем игральный кубик
10 раз подряд выпадает шестерка
кидаем одиннадцатый раз
какова вероятность что выпадет шестерка

Нет, не такая. У нас есть очень осведомлённый ведущий, который вносит коррекцию в результат.
Т.е., в этом примере -
ведущий после каждого броска:
поворачивает кубик шестёркой вверх, если выпала не шестёрка,
или
поворачивает кубик шестёркой вниз, если выпала шестёрка.
Какова вероятность того, что в итоге кубик окажется шестёркой вверх? 😉

SAN

именно действие ведущего после вашего выбора изменяет вероятность нахождения приза в третьей шкатулки

Вероятность нахождения приза в выбранной вами шкатулке изменится точно также
😃

7 days later
sasha2

Все очень просто! Не надо никаких вероятностей! 😛
Рассматривать задачу лучше не с позиции игрока, как все и делают, а с позиции ведущего.
В условии сказано, что он знает, в какой коробке лежит приз.

  1. Игрок выбрал коробку с призом. Ведущему это не нравится, так как он заинтересован в том, чтобы приз не достался игроку и он предлагает сделать новый выбор, открывая одну из пустых коробок, чтобыигрок ничего не заподозрил. Если игрок согласится поменять выбор, то он неминуемо проиграет.
  2. Игрок выбрал пустую коробку. В таком случае ведущему повезло, ему незачем предлагать игроку менять выбор, он не станет открывать коробку.

    Отсюда следует, что если игроку предлагают сделать новый выбор, это значит, что он уже выбрал коробку с призом и ему не следует этого делать.

Надеюсь, что понятно изложил свои мысли. 😊

SAN

Надеюсь, что понятно изложил свои мысли.

Вы только не поняли условие задачи.
По условию ведущий всегда открывает пустую коробку.

sasha2

ОЙ… 😊
Условие до конца не дочитал… 😃 😕

А! 😛 тогда все еще проще!
Обратимся к вымышленной статистике. Понадобятся 400 вымышленных идеальных человек. 200 будут ведущими и 200 - игроками. 100 игроков специально поменяют выбор, а 100 других- нет.
В самом начале примерно 33 человека из каждой сотни выберут коробку с призом, а 67- пустую.
Затем ведущие открывают пустую коробку и убирают ее, предлагая поменять выбор.
В сотне игроков, не поменявших выбор, будут 33 победителя и 67 проигравших.
В другой сотне все игроки выберут другую оставшуюся коробку (при смене выбора выбирать приходится всего из 1 коробки). 33 человека, изначально выбравших коробку с призом, проиграют, а 67, изначально выбравших пустую коробку получат приз, так как он у них находится как раз в оставшейся коробке.
Вывод: после первого выбора вероятность нахождения приза в выбранной коробке - 33%, а в двух оставшихся - 67%, из них одну пустую убиают, значит вероятность нахождения приза в одной оставшейся коробке равна 67% и ему все таки стоит поменять выбор.