ЦТ и Устойчивость модели
Владимир, мне очень лестно ваше мнение о том, что “моя теория слишком упрощена…”
Это не моя теория. Я привел только материалы из учебника Мхитаряна “Аэродинамика” и монографии академика Остославского “Аэродинамика самолета”, которые стали моими настольными книгами.
Чтож Мхиторян так Мхиторян, откроем его “Аэродинамику” на стр 209
Раз академик Остославский для вас авторитет давайте также посмотрим,что говорит о фокусе он. Только зачем нам книга аэродинамика – эта наука об обтекании тел ваздухом, а мы рассматриваем вопросы устойчивости самолёта – это раздел динамикм полёта, возьмём другую его работу:
открываем на стр 19
ВОПРОС: Нет ли где ошибок в выводе понятия фокус Мхиторяна, согласны ли теперь, что момент по альфа( Су) относительно F постоянен, (про приращение подъемной силы соглашаться не обязательно)? (если нет, то где ошибки)
У меня тоже появилось ощущение, что истины мы с Вами не найдем.
Я ведь не ссылки даю. От ссылок толку мало. Я стараюсь изложить видение вопроса, то есть как я понимаю написанное кем то. Потому что просто отсылая к разным авторам мы придем в конце концов к ссылке на одни и те же слова, но Вы их понимаете по своему, а я по своему.
Давайте сначала прийдем к ссылке на одни и теже слова. Если это будет чёткая формулировка , то понимать её по разному сложно. Разьве только если предполагать крайности, например, а что будет с фокусом если скорость равна бесконечности, или нулю, или плотность воздуха равна нулю… 😁
Можно и не распыляться по куче проблем. Можно поговорить только про фокус профиля. Но давайте говорить о нем. У нас же с Вами получается так: я Вам свои аргументы, а Вы мне свои. В предыдущем посте приведена большая цитата из моего поста. Зачем? Ведь дальше ни слова не сказано о том, что в моих словах верно, а что - ошибочно.
😦
- ОК будем говорить только об одной теме зарас, сайчас о фокусе (о том что это, где расположен и есть ли вообще).
- Извините за неотвеченное. 😊 Чтобы не было взаимо обид я предлагаю ещё болёё ужесточить регламент. Каждый задаёт ТОЛЬКО ОДИН вопрос, а оппонент отвечает на него ПОЛНОСТЬЮ. ВЫ согласны? В текущем постинге я задал только один вопрос.
- И ещё предложение давайте говорить только в практическом (применимом к радиомоделям), не теоретическом аспекте. На ученого я не тяну, да и не интересно это мне.
Нет, не согласен. Как Вы думаете, где находится фокус любого несимметричного профиля при угле атаки, на котором подьемная сила равна нулю?
“При этом центр давления находится на + - бесконечности” - это цитата из “Аэродинамики” Мхитаряна.
С какой страницы эта цитата? Помоему она не точна. Я думаю все завасит от конкретного профиля, на подавляющем большинстве в этом месте линейный участок и следовательно фокус тамже, где и для летных углов. Однако у некоторых профилей около нулевой подъёмной силы (аналогично как около закритических углов атаки)мы имеем нестабильное положение F из-за того, что график Сm по Су в этой точке начинает быть нелинейным.
И, если можно, еще один вопрос. Вот Вы говорите: устойчивость больше, устойчивость меньше - а зачем она должна быть больше или меньше?
Свое мнение по этому вопросу я выделил жирным шрифтом. А вот по Вашему получается что запас устойчивости не нужен. Приращение подъемной силы в фокусе, а фокус от угла атаки не зависит. Для чего тогда нужен запас устойчивости?
Вы думаете этот вопрос не связан с фокусом и лишь отнимает время?
Вопрос правильный и мы его обсудим, но мы же договорились говорить только об одной теме зарас, сайчас о фокусе (о том что это, где расположен и есть ли вообще).
Мне вот еще понравилась Ваша картинка, где подъемная сила У приложена в одной точке, а ее приращение - дельта У - в другой. Интересно, а как это объяснить физически?
Представьте угол атаки с нулевой подъемной силой. Мелкими шажками начинаем увеличивать угол атаки и маленькие приращения подьемной силы складываем (интегрируем). Все маленькие приращения приложены в одной точке - фокусе. А их сумма, оказывается приложена в другой точке - в ЦД. Вы не находите в этом ничего пародоксального?
сразу после фокуса давайте обсудим эту тему, если вас не устроит объяснение с приращением, я смогу объяснить появление устойчивости без этого термина или более подпобно объясню в чем его физический смысл.
Для Lasy и не только: Из практики RC COMBAT (правда для меня лично, про остальных не знаю) модель с плосковыпуклым профилем предпочтительнее… Посадочная скорость не более 20(!)км.час, полётная около 150… Если аппарат ПРАВИЛЬНО настроен, проблем никаких 😆 И фокусы и Ц.Д. - от лукавого 😆 Есть конкретный аппарат, есть ГОЛОВА и руки - всё летает 😆 😆 😆 Неоднократно писал - назвать аэродинамику НАУКОЙ 😃 😃 😃 И прочнисты - зачем проводят копровые испытания самолётов??? Ведь есть сопромат!!! Может я тупой?
Владимир, странно, что Вы не заметили цитируемых слов из Мхитаряна. Вы дали скан со стр. 210, а цитата взята со стр.211. 😃
Обратили внимание, что Сm сильно зависит от угла атаки - график внизу отсканированной страницы? А еще в предыдущем посте Вы утверждали обратное, и тоже с цитатой. :rolleys:
В одном из номеров МСиХ в рубрике “Атлас профилей” даны продувочные характеристики Clark Y. Там Сm тоже сильно зависит от угла атаки.
А теперь Ответ:
Ошибок в определении понятия фокус в учебниках нет. Только надо понимать, что понятие это условное, удобное для мат.анализа. И рассматривать его в отрыве от изменяющегося по углу атаки момента крыла нельзя. Если Вы помните правила векторного сложения из линейной алгебры, то должны знать, что любой вектор может быть перенесен параллельно самому себе в другую точку. При этом появляется момент, равный по величине произведению величины переносимого вектора на расстояние между линиями его приложения до и после переноса. Пользуясь этим правилом и введено понятие фокуса. А Вы первую часть поняли как единственную, проигнорировав меняющийся момент крыла при изменении угла атаки. А ведь именно он требует запаса продольной устойчивости.
Мой же вопрос обозначен ранее синим цветом. На него надо либо ответить, либо признать ошибочность Ваших объяснений с упомянутой картинкой.
Заметьте, это все исключительно о фокусе.
Обратили внимание, что Сm сильно зависит от угла атаки - график внизу отсканированной страницы? А еще в предыдущем посте Вы утверждали обратное, и тоже с цитатой.
В одном из номеров МСиХ в рубрике “Атлас профилей” даны продувочные характеристики Clark Y. Там Сm тоже сильно зависит от угла атаки.
УРА!!! Я кажется понял почему мы так долго не можем понять друг друга - Мы говорим про разные моменты!!! Как известно просто моментов не бывает, они всегда находятся относительно чегото (какойто оси). В нашем разговоре присудствуют три момента:
Cm-момент аэродинамических сил относительно передней кромки крыла ПК.
Cmo- момент аэродинамических сил относительно передней кромки крыла при нулевой подъёмной силе.
Cmf- момент аэродинамических сил относительно фокуса (т.е ось в фокусе).
Сm безусловно, у всех профилей зависит от альфа. Возьмем поляры профиля (продувки СибНиа) Я специально выбрал «нетипично - замороченный выпукло – впуклый профиль»
Слева мы видим Зависимость Cm(Cy). Момент относительно ПК действилельно сильно зависит от Су, но что мы видим, Боже эта зависимость на рассматриваемых углах атаки носит линейный характер, вот это подарок! ( У меня есть поляры около 200 профилей и все они линейны). Чтож “раз момент относительно какой то точки прямой (носка в данном случае) носит линейный характер то где на ней есть точка относительно которой этот момент будет постоянным” (С) Школьные Знания
Эта точка называется фокус. Как найти просто описано у Мхиторяна. В самом деле прямую зависимость можно описать Сm=А*Cy+В причем простейший анализ показывает что коэффициенты АиВ соответствуют Координате фокуса и моменту аэродинамических сил относительно передней кромки крыла при нулевой подъёмной силе соответственно. Те Cm=Xf*Cy+Cmo
График Cmf(Сy) для этого профиля я построил сам красным цветом. Формулы для пересчёта Сm на момент относительно любой другой точки (например фокуса) просты
Cm=Cmf+Xf*Cy
Cmf=Cm-xf*Cy
Проверьте сами, Для данного профиля Xf=0.244 (в таблице фокус обозначен как dCm/dCy, производная момента по подъёмной силе)
Посчитаем момент например для Су=1
Cmf=0.37-0.244*1=0.126= Cmo
Подставляя разные Су мы всё время будем получать, что момент относательно F
Cmf=Cmo=const
Вопрос согласны ли вы, что на профиле есть точка момент аэродинамических сил относительно которой на лётных докритических углах атаки постоянен и имя ей фокус?
А теперь Ответ:
Ошибок в определении понятия фокус в учебниках нет. Только надо понимать, что понятие это условное, удобное для мат.анализа. И рассматривать его в отрыве от изменяющегося по углу атаки момента крыла нельзя. Если Вы помните правила векторного сложения из линейной алгебры, то должны знать, что любой вектор может быть перенесен параллельно самому себе в другую точку. При этом появляется момент, равный по величине произведению величины переносимого вектора на расстояние между линиями его приложения до и после переноса. Пользуясь этим правилом и введено понятие фокуса. А Вы первую часть поняли как единственную, проигнорировав меняющийся момент крыла при изменении угла атаки. А ведь именно он требует запаса продольной устойчивости.Мой же вопрос обозначен ранее синим цветом. На него надо либо ответить, либо признать ошибочность Ваших объяснений с упомянутой картинкой.
Заметьте, это все исключительно о фокусе.
Вы пишете про фокус «что понятие это условное, удобное для мат.анализа». Слово условное это всего лишь прилагательное и какие бы мы прилагательные (условное, толерантное, красивое, бесполезное итд итп) не ставили перед понятием фокус
, физический смысл его при этом не меняется. Про момент см выше
Ответ на ваш вопрос «Представьте угол атаки с нулевой подъемной силой. Мелкими шажками начинаем увеличивать угол атаки и маленькие приращения подьемной силы складываем (интегрируем). Все маленькие приращения приложены в одной точке - фокусе. А их сумма, оказывается приложена в другой точке - в ЦД. Вы не находите в этом ничего пародоксального?»
Парадоксального нет тк мы складываем приращения подъёмной силы а в ЦД приложена полная аэродинамическая сила (на моих рисунках я для простоты не рисовал ни силу сопротивления, ни полную аэродинамическую силу.
Вопрос согласны ли вы, что на профиле есть точка момент аэродинамических сил относительно которой на лётных докритических углах атаки постоянен и имя ей фокус?
Нет, не согласен. И мое несогласие вытекает из приведенных Вами графиков.
Посмотрите на них внимательно!
Такую точку можно найти только тогда, когда относительно нее момент крыла и подъемная сила крыла обращаются в нуль при одном и том же угле атаки. Это условие выполняется только для симметричных профилей, причем и то и другое обращаются в ноль при нулевом же угле атаки.
Если не пренебрегать участком Вами приведенных графиков вблизи углов атаки -7, -5 градусов, то видно, что это условие не выполняется
Давайте обратимся к математике. Су и Сm в описываемых диапазонах полетных режимов являются линейными функциями. Линейные функции описываются линейными уравнениями. Допустим Су=A*x+B и Cm=C*Cy+D, здесь х - угол атаки. Тогда отношение Су к Сm:
Cy/Cm={A*x+B}/{C*Cy+D} , перепишем:
Су/Cm={A*x+B}/{C[A*x+B]+D} , перепишем:
Су/Cm={A*x+B}/{C*A*x+C*B+D}
Чтобы найти условие, при котором Cy/Cm не зависит от х, подставим Cy/Cm=k: и перепишем:
A*x+B=k*C*A*x+k*C*B+k*D , или:
A*x-k*C*A*x=k*C*B+k*D-B , или:
x*{A-k*C*A}=k*C*B+k*D-B
Это уравнение верно для любого х только когда k*C=1
Теперь вспомним, что k=Cy/Cm, отсюда:
Cy*C/Cm=1, или:
Сm=C*Cy
В общем виде мы выше писали:
Cm=C*Cy+D
Отсюда видно, что отношение Cy/Cm не зависит от угла атаки х только когда D=0.
(Кстати, физический смысл коэффициента D - это Сmo)
Это и есть математический эквивалент того словесного условия, которое я выделил красным цветом. Для произвольных несимметричных профилей оно, конечно не выполняется.
Если Вам не нравится математика, давайте разберемся с механикой на словах.
Посмотрим еще раз внимательно на Ваш график.
При угле атаки, на котором подъемная сила равна нулю (допустим это -7 градусов), момент крыла нулю не равен. А при равном нулю моменте,(допустим это угол атаки -5 градусов) не равна нулю подъемная сила. Т.е. при данном угле атаки( -5 градусов), подъемная сила, умноженная на плечо от ее точки приложения до фокуса должна быть равна точному значению момента крыла на угле атаки -7 градусов. Иначе суммарный момент крыла не будет неизменным.
Так вот, возможно при точной подгонке коэффициентов и можно для какого то профиля выполнить это условие. Но для несимметричного произвольного профиля оно само не выполнится.
Более того, из выше приведенных выкладок следует, что чем дальше друг от друга находятся углы атаки нулевой подъемной силы (в Вашем примере -7 градусов) и нулевого момента крыла (в Вашем примере -5 градусов), тем сильнее перемещается точка приложения подъемной силы по хорде крыла при изменении угла атаки крыла.
На графике это означает, что для неизменности момента крыла относительно фокуса линия Су и линияCm должны пересекать ось абсцисс в одной точке. А этого нет даже на Вами приведенных графиках.
Парадоксального нет тк мы складываем приращения подъёмной силы а в ЦД приложена полная аэродинамическая сила (на моих рисунках я для простоты не рисовал ни силу сопротивления, ни полную аэродинамическую силу.
Вот тут я уже не пойму, Вы лукавите, или не понимаете.
Полная аэродинамическая сила как вектор раскладывается по двум координатам на подъемную силу и силу лобового сопротивления, которые, естественно, приложены в той же точке, что и исходный вектор. Иначе их векторная сумма не будет равна исходной полной аэродинамической силе.
На Вашей картинке нарисована подъемная сила Y и приращение подъемной силы - дельта Y.
Давайте разделим вопрос на две части:
- Вы согласны что Y это сумма всех дельта Y, при увеличении угла атаки от угла нулевой Y до текущего значения?
- Как Вы объясните, что Вася складывал десять раз себе в карман по одному рублю, а десять рублей в сумме оказались в кармане у Пети? 😃
«Вопрос согласны ли вы, что на профиле есть точка момент аэродинамических сил относительно которой на лётных докритических углах атаки постоянен и имя ей фокус?»
Нет, не согласен. И мое несогласие вытекает из приведенных Вами графиков.
Посмотрите на них внимательно!
Такую точку можно найти только тогда, когда относительно нее момент крыла и подъемная сила крыла обращаются в нуль при одном и том же угле атаки. …
Не совсем понял, что значит (из вашего определения) подъёмная сила крыла относительно точки обрашается в ноль. Насколько я понимаю Y – это сила и следовательно относительно любой точки не меняет своих значения и направления. Обратиться в ноль может только момент этой силы.
«Вопрос согласны ли вы, что на профиле есть точка момент аэродинамических сил относительно которой на лётных докритических углах атаки постоянен и имя ей фокус?»…
…Отсюда видно, что отношение Cy/Cm не зависит от угла атаки х только когда D=0.
(Кстати, физический смысл коэффициента D - это Сmo)
Это и есть математический эквивалент того словесного условия, которое я выделил красным цветом. Для произвольных несимметричных профилей оно, конечно не выполняется.
Обратите внимание, что в моём вопросе говориться о моменте аэродинамичесеких сил Cmf относительно фокуса и не зависяшим от угла атаки. В вашем доказательстве везде фигурирует момент относительно носка Сm, а в конечном выводе вы говорите, что отношение коэфициента подъёмной силы к коэфициенту моменту относительно носка не зависит от угла атаки х только когда Сmo =0. «Где имение, а где вода?»
Не смея предположить, что Вы лукавите, на всякий случай объясняю, что такое момент. Моментом силы относительно оси называется произведение силы на кротчайшее расстояние до этой оси.
Если Вам не нравится математика, давайте разберемся с механикой на словах.
Посмотрим еще раз внимательно на Ваш график.
При угле атаки, на котором подъемная сила равна нулю (допустим это -7 градусов), момент крыла нулю не равен. А при равном нулю моменте,(допустим это угол атаки -5 градусов) не равна нулю подъемная сила. Т.е. при данном угле атаки( -5 градусов), подъемная сила, умноженная на плечо от ее точки приложения до фокуса должна быть равна точному значению момента крыла на угле атаки -7 градусов. Иначе суммарный момент крыла не будет неизменным.
Так вот, возможно при точной подгонке коэффициентов и можно для какого то профиля выполнить это условие. Но для несимметричного произвольного профиля оно само не выполнится.
Берём рассматриваемый профиль, находим момент относительно F и сравниваем с моментом при Су =0
Cmf=Cm-Cy*Xf=0-0.5*0.244=-0.122 что приблизительно равно Cmo=-0.125 (погрешность графиков)
Профиль Р –III- 15.5%
Cmf=0-0.15*0.228=-0.034 что приблизительно равно Cmo=-0.035
Есть смысл продолжать?
Итак подводя итог:
Вы согласились что Cm=C*Cy+D (т.к использовали эту формулу в своих рассуждениях)
Раз вы не согласны со мной докажите пожалуйста, что момент Сmf относительно некой точки F c относительной координатой Xf=С (С это коэфициент из вашей формулы) не является константой, на линейном участке Су. Это и есть мой ВОПРОС-ПРОЗЬБА.
Вот тут я уже не пойму, Вы лукавите, или не понимаете.
Полная аэродинамическая сила как вектор раскладывается по двум координатам на подъемную силу и силу лобового сопротивления, которые, естественно, приложены в той же точке, что и исходный вектор. Иначе их векторная сумма не будет равна исходной полной аэродинамической силе.
На Вашей картинке нарисована подъемная сила Y и приращение подъемной силы - дельта Y.
Давайте разделим вопрос на две части:
- Вы согласны что Y это сумма всех дельта Y, при увеличении угла атаки от угла нулевой Y до текущего значения?
- Как Вы объясните, что Вася складывал десять раз себе в карман по одному рублю, а десять рублей в сумме оказались в кармане у Пети?
Попробую ответить сразу на два вопроса. Наверно просто суммировать будет некорректно. Парадокс о котором вы говорите здесь есть и возникает он, ИМХО, вот из-за чего: откроем Мхиторяна стр 209, он приводит рисунок с несимметричным профилем и первая же формула
Mz=-Y1*Xд скажем так: некорректна для практика, по его формуле (вдальнейшем от из нее вывотит формулу координаты ЦД) при подъёмной силе равной нулю момент тоже должен быть равен нулю, но мы знаем из практики (продувок), что это не так. Это значит толко то, что прикладывая вектор подъёмной силы и сопротивления в одной точке - ЦД мы не можем описать адекватно картину обтекания потоком профиля (силы приложены распределённо по профилю и создают ещё моменты). Расчет ЦД и устойчивости по ЦД сильно сложны, поэтому в аэродинамический атласах профилей и не приводят графики ЦД, практики расчитывают уже лет восемдесят устойчивость самолётов без этого. (Но вообше такие методы есть, см например софт Xfoil Марка Дреллы).
Когда я приводил рисунок, то под приращением подъёмной силы имелось следующее: Расчеты в сотнях книг, практические испытания сотен моделей, самолётов и продувки говорят о том, что если при одном и томже угле атаки мы имеем ЦТ в F, то л/а становится статически нейтральным, а если ЦТ впереди Фокуса, то устойчивым. Значит Сила которая восстанавливает вышедший из равновесия л/а (её в литературе называют приращением подъёмной силы) приложена в фокусе. Из этого может не следовать, что суммируя по всем углам атаки мы получим полную силу, имелся ввиду только установившийся полёт выход из него на небольшой угол атаки и возврат в установившийся полёт. В реальном обтекании силы не приолжены в одной точке и создают еще моменты, поэтому мы не можем просто просуммировать. (ДАВАЙТЕ ВМЕСТО Y В ЦД НА РИСУНКЕ ИЗОБРАЗИМ РАСПРЕДЕЛЁННУЮ АЭРОДИНАМИЧЕСКУЮ СИЛУ ПРИЛОЖЕННУЮ ПО ВСЕМУ ПРОФИЛЮ, В УСТАНОВИВШЕМСЯ ПОЛЁТЕ ОНА КОМПЕНСИРУЕТСЯ СИЛОЙ НО ГО и СИЛОЙ ТЯЖЕСТИ, А ПРИРАЩЕНИЕ ПО ПРЕЖНЕМУ БУДЕТ В F) Впрочем если вас не устраивает такоё доказательство устойчивочти «на пальцах», я приведу вам строго математическое доказательство, сразу как мы покончим с фокусом.
Кстати вы всё время критикуете «мои» методы устойчивости, а где я могу прочитать методику расчета устойчивости которую разделяете вы, ведь мы договорились вести диалог в практическом, не только теоретическом русле – значит нужна методика. В вашей с Павловым статье никаких формул нет, только номограмма без указания её автора (если память всё ещё не изменяет мне, первый раз я видел такую номограмму в «Авиационном Бюллетене США 1935г) в Мхиторяне тоже нет методики. Я расчитаваю на устойчивость по РДК (см сканы выше)
Суважением
Владимир
Не совсем понял, что значит (из вашего определения) подъёмная сила крыла относительно точки обрашается в ноль. Насколько я понимаю Y – это сила и следовательно относительно любой точки не меняет своих значения и направления. Обратиться в ноль может только момент этой силы.
Я же сослался в абзаце на Вами приведенный график. А на нем изображено изменение коэффициентов подъемной силы и момента от угла атаки. Из контекста понятно, что при изменении угла атаки и подъемная сила и момент изменяются. Так вот, если при изменении угла атаки они обращаются в ноль при одном и том же угле атаки, то для такого профиля упомянутая точка может быть найдена.
Теперь понятно?
Обратите внимание, что в моём вопросе говориться о моменте аэродинамичесеких сил Cmf относительно фокуса и не зависяшим от угла атаки. В вашем доказательстве везде фигурирует момент относительно носка Сm, а в конечном выводе вы говорите, что отношение коэфициента подъёмной силы к коэфициенту моменту относительно носка не зависит от угла атаки х только когда Сmo =0. «Где имение, а где вода?»
Итак подводя итог:
Вы согласились что Cm=C*Cy+D (т.к использовали эту формулу в своих рассуждениях)
Раз вы не согласны со мной докажите пожалуйста, что момент Сmf относительно некой точки F c относительной координатой Xf=С (С это коэфициент из вашей формулы) не является константой, на линейном участке Су. Это и есть мой ВОПРОС-ПРОЗЬБА.
Обратите внимание на формулу 12.21 из скана Вами приведенной выше страницы Мхитаряна: производная от момента по подъемной силе равна координате фокуса относительно носка профиля. Если взять интеграл в диапазоне от угла атаки нулевой подъемной силы до текущего значения, то для участка линейной зависимости мы получим:
Cm/Cy=-Xf
В предыдущем посте я Вам строго математически доказал, что отношение Cm/Cy не зависит от угла атаки только при D=0. Теперь же очевидно, что Xf не зависит от угла атаки только когда D=0.
Какие еще нужны доказательства?
Впрочем если вас не устраивает такоё доказательство устойчивочти «на пальцах», я приведу вам строго математическое доказательство, сразу как мы покончим с фокусом.
Не устраивает. Причем не доказательство устойчивости меня не устраивает, а доказательство существования неподвижного на разных углах атаки фокуса для любого профиля. Вот это меня не устраивает. Поскольку я привел строгое математическое доказательство обратного утверждения. Попробуйте его так же строго опровергнуть.
Кстати вы всё время критикуете «мои» методы устойчивости, а где я могу прочитать методику расчета устойчивости которую разделяете вы, ведь мы договорились вести диалог в практическом, не только теоретическом русле – значит нужна методика.
Суважением
Владимир
Нет, я не “Ваши” методы расчета устойчивости критикую.
Я утверждаю, и строго доказываю Ваше недопустимое упрощение представления о соотношении фокуса профиля, центра давления профиля и их зависимости от свойств профиля.
Собственно, Вы утверждали, что подход к вопросам устойчивости определяется только геометрией самолета в плане и не зависит от вида профиля крыла.
Я же попытался доказать, и достаточно строго, что это не так. Что от профиля сильно зависит допустимый по условиям продольной устойчивости диапазон центровок. В частности от такой характеристики профиля, как Cmo.
Не доказал? Жаль.
С не меньшим уважением
Владимир.
В вашей с Павловым статье никаких формул нет, только номограмма без указания её автора (если память всё ещё не изменяет мне, первый раз я видел такую номограмму в «Авиационном Бюллетене США 1935г) в Мхиторяне тоже нет методики.
Уважаемый, вы, критикуемую вами, статью внимательно читали? Видимо, не очень. Прочитайте еще раз, и найдите ссылку.
…Уважаемый, вы, критикуемую вами, статью внимательно читали? Видимо, не очень. Прочитайте еще раз, и найдите ссылку.
Перед номограммой в статье написано следующее "Известна номограмма, с помощью которой по геометрическим характеристикам прототипа можно определить параметры его продольной устойчивости, характеризуемые коэффициентом продольной устойчивости. " И где здесь ссылка?
Перед номограммой в статье написано следующее "Известна номограмма, с помощью которой по геометрическим характеристикам прототипа можно определить параметры его продольной устойчивости, характеризуемые коэффициентом продольной устойчивости. " И где здесь ссылка?
Ссылка в последних двух строках статьи, где ей и положено быть.
Если Вы так же внимательно и мои посты читаете, то я напрасно трачу время… 😦
Извините Владимир и toxa просмотрел. Нет читаю внимательно, отвечаю неторопясь - нет повода для волнения 😁
P.S.
ИМХО ссылки лучше всего ставить в тексте, а не в конце текста, так делают в технической литературе. Когда в тексте появляется формула или график из другой работы, то тутже ставят ссылку на неё в квадратной скобке, а вот список литератулы для удобства действительно в конце. Кстати есть стандарт на оформление технической литературы, а несоблюдение стандартов преследуется по закону- (шутка, особенно в нашей стране). Поэтому прошу не удивляйтесь, что я искал ссылку там, где она должна быть.
Владимир
Несколько вопросов по поводу вашего доказательства
Чтобы найти условие, при котором Cy/Cm не зависит от х, подставим Cy/Cm=k: и перепишем:
A*x+B=k*C*A*x+k*C*B+k*D , или:
A*x-k*C*A*x=k*C*B+k*D-B , или:
x*{A-k*C*A}=k*C*B+k*D-B
Это уравнение верно для любого х только когда k*C=1
- Извиняясь за тупость, прошу пояснить, что значит фраза «Это уравнение верно для любого х только когда k*C=1» и из чего это следует?
- Вы закончили своё математическое доказательство так
«Отсюда видно, что отношение Cy/Cm не зависит от угла атаки х только когда D=0. (Кстати, физический смысл коэффициента D - это Сmo) Это и есть математический эквивалент того словесного условия, которое я выделил красным цветом. Для произвольных несимметричных профилей оно, конечно не выполняется.»
Я просил вас привести ваше доказательство к фокусу, на что вы ответили так
«Обратите внимание на формулу 12.21 из скана Вами приведенной выше страницы Мхитаряна: производная от момента по подъемной силе равна координате фокуса относительно носка профиля. Если взять интеграл в диапазоне от угла атаки нулевой подъемной силы до текущего значения, то для участка линейной зависимости мы получим: Cm/Cy=-Xf»
Прошу закончить ваше МАТЕМАТИЧЕСКОЕ доказательство не словами, а формулами, прийдя в конце к тому, что Cmf не есть константа по альфа. Только в этом случае можно проанализировать доказательство
Спасибо
Я приглашал принять участие в нашей дискуссии специальста из КБ экспериментальной авиации МАИ Лапшина ВП, он не стал быть втянутым в дисскуссию, но прислал своё мнение письмом. Я персонально согласен практически со всеми его положениями, за исключением дирижаблей, катеров и вертолётов в которых ничего не понимаю. Текст письма Лапшина:
«Добрый вечер,Владимир!
Искренне хотел помочь Вам и попытаться что-то рассказать и порекомендовать в
интересующем Вас вопросе.
Однако,зайдя на указанный форум и ознакомившись с дискуссией (грешен -
прочитал только первую и последнюю страницы - на большее не хватило
терпения) понял,что ничего кроме подливания масла в огонь своими
высказываниями я не добьюсь;кроме того в данной дискуссии широко пользуются
цитатами из разных учебников и иной специальной литературы (из которой
кстати почерпнуты во многом и мои скромные познания),а пользование
какими-либо источниками для выступлений на форумах и подобных трибунах
противоречит моим принципам:оппоненты и сами без моей помощи смогут
прочитать все необходимые издания при желании,подбор же цитат,подходящих к
случаю,является некоей систематической работой - а высказываюсь на форуме я
по причине желания помочь людям в чем-то,прямо не следующем из
литературы,или если мое мнение не совпадает с публикациями.Кроме того просто
получаю удовольствие от общения на интересные мне темы.
По поводу предмета дискуссии кратко выскажусь без форума - здесь:
1.Фокус крыла действительно очень слабо зависит от профиля,настолько,что
принимая его на 25% САХ сильно не ошибешься;разница в 1-2% приводит к
погрешности в модельном размере порядка 3-4 мм - смешно было бы гонять
центровку на доли миллиметра.
2.Потребный запас устойчивости для не управляемой дистанционно модели в
любом случае на порядки превышает ту ничтожную разницу разброса фокуса в
зависимости от формы профиля,а управляемая модель прекрасно может летать и
не обладая статической устойчивостью (может быть Вам известно,что вертолеты
обычных схем все как один статически неустойчивы.А также
корабли,лодки,катера,дирижабли и пр.).
3.Рекомендуемое положение ЦТ относительно САХ крыла в существенной мере
зависит от ФОКУСА ВСЕЙ МОДЕЛИ;запас устойчивости считается именно от него.Не
зная точно нынешнее состояние авиамоделизма,сошлюсь на сведения 60-х
годов:тогда практически все свободнолетающие модели делались с центровкой
60-70%,а могли бы сделать и со100% и с200% плавно переходя к схеме “тандем”
("Илья Муромец"кстати,имел примерно такие центровки).
4.Зависимости положения фокуса от углов атаки на докритических углах (строго
говоря -в линейной зоне) не существует: на то он и фокус:это точка и выбрана
в отличие от центра давления,гуляющего поуглам атаки,за точку отсчета.И
Lго,и Аго,и Вво отсчитываются от 25% САХ именно поэтому.
5.Все моментные характеристики не только авиамодели,но и самолета можно
получить,испытывая простенькую бумажную модель,моделируя натуру только по ее
проекции на виде сверху.
Вот ,практически,основные рассуждения на данную тему,которые пришли в голову
как говорится,не сходя с места. Причины нежелания более углубляться изложены
выше.
Данное послание можете использовать по своему усмотрению,включая полное или
частичное цитирование со ссылкой или без ссылки на меня - безразлично.
В спор по данному вопросу втягиваться я вряд ли стану.
С наилучшими пожеланиями
Зам.Главного конструктора ОСКБЭС МАИ Лапшин Вдадимир Павлович»
2.Потребный запас устойчивости для не управляемой дистанционно модели в
любом случае на порядки превышает ту ничтожную разницу разброса фокуса в
зависимости от формы профиля,а управляемая модель прекрасно может летать и
не обладая статической устойчивостью (может быть Вам известно,что вертолеты
обычных схем все как один статически неустойчивы.А также
корабли,лодки,катера,дирижабли и пр.).
Очень хотелось бы посмотреть на это…Ну очень…Давеча гонку облётывал, просчитался с центровками…12 секунд летело. :rolleys:
…Очень хотелось бы посмотреть на это…Ну очень…Давеча гонку облётывал, просчитался с центровками…12 секунд летело. :rolleys:
Это не моя цитата а Лапшина ВП
Мне думается он имел ввиду, что в реальном полёте сам необладающий статической устойчивостью может обладать динамической устойчивостью (те реальная предельно задняя центровка находиться немного позади фокуса всего самолёта, не до бесконечности конечно)
Из того, что помню, крайне задняя центровка совпадает с фокусом, что даёт нам статически неустойчивый аппарат. Динамически ситуация может как поправится ( смещение фокуса назад ) так и ухудшиться. Как правило, с ростом углов атаки, ЦД крыла идёт вперёд, а вместе с ним и фокус. В результате - только более неустойчивый аппарат. Большие углы как правило присутствуют на взлётно-посадочных режимах…
to Lazy
статическая и динамическая устойчивости это раэные вещи. В подробности влезать не буду, тема сложная и хорошо описанная в книгах. Коротко можно посмотреть здесь
www.markov.baikal.ru/temp/rdk4.jpg
www.markov.baikal.ru/temp/rdk5.jpg
Интересуюсь, а что была за гонка (радио или на верёвочках) и какая центровка?
Так, баловство…Фото в обменнике чата валялись…
Только она не была…Есть и уже летает.
- Извиняясь за тупость, прошу пояснить, что значит фраза «Это уравнение верно для любого х только когда k*C=1» и из чего это следует?
Прошу закончить ваше МАТЕМАТИЧЕСКОЕ доказательство не словами, а формулами, прийдя в конце к тому, что Cmf не есть константа по альфа. Только в этом случае можно проанализировать доказательство
Спасибо
Фраза означает буквально следующее:
Переменная k может быть найдена из приведенного уравнения через параметры
этого уравнения. При этом, она не будет зависить от переменной х только в том случае, когда коэффициент при х обращается в ноль. Этот коэффициент равен (A-k*C*A). Он обращается в ноль только, когда k*C=1, поскольку по определению А нулю не равно. При этом k=1/C. Для всех других решений этого уравнения k будет функцией от х. Надеюсь, теперь понятно?
Насчет слов и формул. Я же достаточно строго доказал, что Xf не есть константа по альфа при D не равном нулю. На словах это и означает, что положение фокуса не для каждого профиля инвариантно к углу атаки. Именно об этом спор.
Собственно, я не знаю как Вас еще убедить.
Попробуйте сами пройти по следующим ступенькам:
- Убедитесь, что дельта Y и Y приложены всегда в одной точке. Это сделать легко. Достаточно вспомнить, что вектор дельта Y есть разность между вектором Y при одном угле атаки и вектором Y при другом угле атаки. А поскольку исходные вектора параллельны и лежат на одной линии(при малых изменениях угла атаки), то по правилам векторной алгебры и их разностный вектор тоже лежит на этой же линии.
- Если Вы согласились с п.1, то попробуйте еще раз нарисовать картинку, иллюстрирующую случай статической продольной устойчивости. Обратите внимание, впереди чего - фокуса или ЦД должен находиться ЦТ для обеспечения минимальной продольной устойчивости.
Ну и насчет практики. Я не только книги читаю, но и эксперименты ставлю. В частности, пару лет пробую летать на статически неустойчивых самолетах, доводя центровку до 60%. Естественно, полеты в этом случае возможны только с электронной системой обеспечения продольной устойчивости, основанной на применении в канале тангажа эффективного гироскопа в совокупности со скоростной сервомашинкой. В противном случае модель неуправляема в руках любого пилота. Здесь аналогии с большой авиацией невозможны. Моменты инерции модели на порядки меньше, чем у настоящих самолетов, поэтому все нестационарные процессы имеют на порядки меньшие постоянные времени. Если на большом самолете время реакции пилота сопоставимо с этими постоянными времени, то на моделях - нет.
Хотя и на больших самолетах полеты обычного пилота при статической неустойчивости возможны только при электронной системе стабилизации. Аверьянов, и еще несколько асов могут летать на Сушках и с запредельной центровкой, отключая в полете электронику. Но в мире таких пилотов - штуки.
По свободно-летающим моделям. У них природа продольной устойчивости другая. На моделях класса F1 профиль крыла работает на предкритических углах атаки в зоне максимального Cy. Там зависимость Су от альфы резко нелинейна. На этих моделях используются несущие стабилизаторы с очень большими плечом и аэродинамической эффективностью. Если есть интерес, можно поговорить и на эту тему, но это уже другое.
Я просмотрел ваше математическое доказательство. Сначала вы доказываете, что Су/Сm=const только при Cmo=0 и я с этим согласен. Затем вы говорите:
«Обратите внимание на формулу 12.21 из скана Вами приведенной выше страницы Мхитаряна: производная от момента по подъемной силе равна координате фокуса относительно носка профиля. Если взять интеграл в диапазоне от угла атаки нулевой подъемной силы до текущего значения, то для участка линейной зависимости мы получим:
Cm/Cy=-Xf»
Помоему вы не правильно взяли интеграл. Я могу конечно ошибаться (давно это было, именно по этому я и просил вас самому закончить ваше доказательство ввиде формул) Посмотрите, что получилось у меня:
Если это верно, то ваше доказательство теряет силу.
Предлагаю вам рассмотреть «моё» доказательства существования фокуса. Я берусь доказать, что момент аэродинамических сил Cmf, относительно точки F не зависит от Cy на линейном участке.
Обратите внимание, что в этом случае мы получили ту же формулу для определения Xf, что и при интегрировании.
Позвольте оставить ваши не математические доводы без комментариев (недостаток времени, да и без математики трудно договориться) Про F1 совершенно согласен – лучше поговорить позже. Там случай особый, я не удивлюсь если они сделаны не по нормальной схеме, а как тандемы.
Черт, приятно иметь общение с умным человеком. 😃
Доводы весьма убедительны.
Однако…
Попробуйте оценить и мои доводы. К сожалению, я не умею здесь картинки размещать, да и сканера под рукой нет. Я попробую изложить по тексту:
Начнем с самого начала.
Устойчивым движение самолета называется способность сохранять движение неизменным при воздействии на самолет дестабилизирущих возмущений. Оно возможно при одновременном выполнении двух условий:
- Сумма всех сил и моментов действующих на самолет в отсутствие возмущений равна нулю - т.н. условие стационарности.
- Воздействие какого-либо дестабилизирующего возмущения приводит к изменению сил и моментов, стремящихся компенсировать это воздействие.
Обратимся к первому условию - условию стационарности.
Представим крыло самолета, летящего равномерно и горизонтально.
По вертикальной оси на самолет действуют две силы, сила тяжести Ft и подъемная сила Y=Cy*q*S
Здесь q - скоростной напор, а S - площадь крыла.
По условию стационарности Ft=Y, или Ft=Cy*q*S, отсюда Cy=Ft/(q*S)
На самолет действуют два момента (моменты рассматриваем относительно носка профиля) : момент силы тяжести Mt=Ft*Xt и аэродинамический момент Ma=Cm*q*S*b. Здесь: Xt - координата ЦТ от носка профиля, а b - хорда профиля
(для справки - формула Ma у Мхитаряна на стр.203 за номером 12.9)
Мы помним, что коэффициент момента Cm=M*Cy+Cmo. Здесь M - производная момента крыла по Су, а Cmo - момент крыла при нулевой подъемной силе.
Подстановкой получим Ma=M*Cy*q*S*b+q*S*b*Cmo
Подставим сюда значение Cy полученное выше из условия стационарности:
Ma=(M*q*S*b*Ft)/(q*S)+q*S*b*Cmo
Упростим:
Ma=M*b*Ft+q*S*b*Cmo
По условию стационарности для моментов
Mt=Ma
Подставим сюда выраженные ранее значения моментов. Получим:
Ft*Xt=M*b*Ft+q*S*b*Cmo
Выразим отсюда положение центра тяжести, необходимое для выполнения условий стационарности по силам и моментам:
Xt=(M*b*Ft)/Ft+(q*S*b*Cmo)/Ft
и упростим:
Xt=M*b+(q*S*b*Cmo)/Ft
Чем интересна полученная формула? Если на нее внимательно посмотреть, то мы увидим, что для профиля крыла, у которого Cmo не равен нулю, положение ЦТ для выполнения условия стационарности должно меняться в зависимости от скоростного напора q, то есть от скорости полета самолета. Напомню: q=(p*V*V)/2
Я думаю, отсюда очевидным будет тот факт, что самолет с крылом такого профиля без оперения и с фиксированным положением ЦТ в принципе не может быть устойчивым. Поскольку для него условие стационарности выполняется только при одной - фиксированной скорости полета. На любой другой скорости полета на такой самолет начинает действовать нескомпенсированный момент, от которого самолет начнет поворачиваться даже БЕЗ дестабилизирующих возмущений.
Я прошу отметить, что здесь нет ни слова о фокусе. Тем не менее, Ваше замечание о возможности сделать бесхвостку с любым профилем крыла, не согласуется с приведенными выше расчетами.
Доказательства нужны непременно, т.к опыт говорит прямо противоположное:
- Возьмите лист писчей бумаги А4, отмерьте от короткой стороны 50 мм . Теперь проведите линию паралельную короткой стороне и заверните передний, короткий край через эту линию три раза. У Вас получится крыло с хордой 140мм и утяжеленной передней кромкой. Придайте модели небольшое поперечное V и наслаждайтесь устойчивым полётом без всяких спец профилей и круток, можно придать «произвольную кривизну», в пределах разумного конечно.
Так теперь доказательство достаточно убедительное?
Кстати, Вы пытались такое крылышко с вогнутым “в пределах разумного” профилем заставить пикировать вертикально вниз? Если да, то у Вас это получилось?
Когда мы обратимся к обычной схеме самолета и начнем расчитывать требуемую эффективность стабилизатора, нам обязательно придется учитывать параметр Cmo профиля крыла, который портит нам жизнь. Что в свою очередь подтвердит мой тезис об ошибочности оценки продольной устойчивости самолета только по его геометрии в плане, без учета свойств профиля крыла.
Приведенные мной доводы были интуитивно поняты еще Отто Лилиенталем в позапрошлом веке, предложившем стабилизацию бесхвостки на разных скоростях перемещением положения ЦТ. О том, насколько надежным оказалось такое решение в широком диапазоне скоростей говорит печальная судьба изобретателя. Хотя современные дельта-планеристы разбиваются гораздо реже. :rolleys:
Поскольку меня до понедельника в сети не будет, попробуйте сами решить вопрос об устойчивости по тангажу бесхвостки с Cmo профиля крыла не равным нулю на режиме длительного пикирования. Когда сила тяжести и полная аэродинамическая сила лежат на одной вертикальной линии, а момент крыла - Сmo нулю не равен. 😃
Это, так сказать крайний случай, а есть еще переходные, когда траектория прямолинейна, но находится под углом к горизонту, от косинуса которого зависит плечо силы, компенсирующей Cmo. Если Вы попытаетесь расчитать условие стационарности для этого случая, то с удивлением обнаружите, что требуемое положение ЦТ по условию стационарности зависит и от наклона траектории.
Как же может летать такой самолет?
Буду рад, если где-либо в моих рассуждениях и выкладках этого поста Вы, Владимир, найдете неточность или ошибку.