Проект станка
Все зависит от обрабатываемого материала и качества обработки.
Да, это я забыл написать, планируется обрабатывать дерево, иногда пластик и аллюминий (можно медленно и немного). В первую очередь требуется качество обработки по максимуму в художественных целях.
Направляющие 900мм при незначительной нагрузке в середине прогнутся каждая на 1мм,в сумме,допустим 0.5мм.При этом будут вибрировать и резонировать.
Сегодня в Солиде посчитал деформации для направляющей 980 мм и толщиной 20, 25 и 30 мм при нагрузке 10 кг (100 ньютонов) в центре, получилось примерно 0,2 мм, 0,09 мм и 0,043 мм соответственно. Да, действительно, 20 мм явно мало, лучше всего 30 мм, но 1 метр такой весит 5,5 кг (для 25 мм - 3,8 кг), наверное таки 30 мм будет.
Детали,зажимающие направляющие допустим можно изготовить одинаковые за одну установку на расточном,это уберет 6 лишних деталей.
Да, я думал над этим - минимальная непараллельность направляющих и каретку заклинит, потому и сделал детали отдельно, в принципе если их изготавливать за одну установку на станке - должно получиться, как-то сразу не подумал.
Ходовые винты не ставят на обычные подшипники,а на пару радиально-упорных,хотя-бы с одной стороны.это должно быть само по себе,а мотор просто соединен через муфту.
Собираюсь такие подшипники:
внутренний диаметр 10 мм, наружный 28 мм, крепится винт так:
слева там еще гайкой зажимается - на рисунке отсутствует, а справа к двигателю муфта будет просто кусок полиэтиленовой трубки.
С поперечной осью дело не в развесовке,а в плече рычага.Представьте свою конструкцию в виде рычага с осью в гайке. Что касается вертикальной оси,то она уезжает вверх в никуда,при этом фрезер можно закрепить только на выносной консоли с большим плечом,дрожащим и вибрирующим.Представьте в виде рычагов?
Представляю, правда слабо
Вот, скажем, боковины. Зачем изготавливать для каждой боковины “ребро жесткости”, когда во-первых оно не работает в этой конструкции, а во-вторых дешевле просто боковину взять немного толще.
Да, боковина потолще будет лучше, поубираю ребра тем более, что нагрузка будет в основном вертикальная.
Для обработки алюминия с приемлемой производительностью концевыми фрезами диаметром 6…10 мм настольные рамочно-портальные станки с рабочим полем 700х300 не строят - жесткости не хватит, как ни старайся. Максимум, что можно попробовать сделать - станочек с рабочим полем 150…180 на 200…250 мм с жесткими каретками, ласточкиными хвостами и пр. В этом случае ход по Z в 150…200 мм оправдан. Можно точить объемные алюминиевые корпуса и др. габаритные детали.
Да, я это понимаю - аллюминий планируется немного и нечасто.
Если вы задумали станок с полем 700х300 мм, то это подразумевает плоское фрезерование (типа раскроя) неметаллов и фрезерование алюминия тонкими фрезами диаметром до 3 мм. При всем желании заглубиться более чем на 20 мм вам не удастся – фрезы короткие, а фрезеровать объемный корпус фрезой 3 мм – нонсенс! Тогда в чем смысл рабочего хода по Z в 250 мм? 70…80 мм хватит за глаза. Я говорю именно про рабочих ход. Ступенчато регулировать высоту фрезы над столом можно переустановкой кронштейна со шпинделем.
Я в начале 300 по Z хотел, потом передумал. Необходимо засовывать в станок изделия таких размеров для поверхностной обработки, например гравировка или барельеф по полусфере или пирамиде (или изготовление таких фигур) высотой 200-300 мм, меньше никак нельзя. Кронштейн тоже нельзя - необходим ход по всей длинне Z.
Судя по рисункам, расстояние между стенками каретки Х у вас равно рабочему ходу по Y. А заготовку как крепить? Зачем зауживать нижнюю раму? Габарит станка по ширине у вас задают направляющие Y, вот и используйте весь этот габарит. Рабочий стол в подобных станках должен быть шире рабочего поля, по крайней мере, на 100 мм.
Да, это я на некоторых буржуйских станках насмотрел, разнесу стенки каретки Х на всю ширину - заодно пару деталей ликвидирую.
Общая жесткость конструкции станка подобного типа определятся жесткостью круглых направляющих. И больше ничем! Никакие несущие детали, идущие вдоль направляющих, общей жесткости станку никак не добавляют, а значит, практически бесполезны. С деталями действительно перебор.
Это я для в основном для того чтобы стол не прогибался, если что-то тяжелое положить, надо будет и стол на прогиб посчитать.
Jen
Кроме прогибов есть резонансная частота,которая прогнет гораздо больше.
Подшипники на фото вроде радиально-упорные.
Да, я думал над этим - минимальная непараллельность направляющих и каретку заклинит, потому и сделал детали отдельно, в принципе если их изготавливать за одну установку на станке - должно получиться, как-то сразу не подумал.
Я так и понял.
Но мне в целом как-то не очень…
Разрушайте стереотипы.
Граф
Если возможно, действительно интересно видео Вашего станка в работе.
Не фото.
Это я для в основном для того чтобы стол не прогибался, если что-то тяжелое положить, надо будет и стол на прогиб посчитать.
Любая конструкция при работе испытывает деформации, скажу больше, любая конструкция оказывается работоспособной БЛАГОДОРЯ, а вовсе не вопреки деформациям. Менее жесткие элементы конструкции “подстраиваются” под более жесткие. Предположим, рабочий стол и рама вашего станка будут одинаковой жесткости. Как сдеформируется во время работы система «рама-рабочий стол»? Отвечаю, сдеформируется непредсказуемо! Причем, деформации эти смогут меняться во время работы произвольно. Так не делают. Что-то должно быть заведомо жестче.
Обычно заведомо жестче делают те элементы конструкции, которые ужесточить проще. В данном случае жесткий (и ровный) стол сделать проще, чем жесткую раму, которая всегда будет стремиться свернуться винтом.
Сделайте ровный крепкий и жесткий рабочий стол (например, в виде толстой плиты, необязательно металлической), а направляющие Х вместе с торцевыми балками подвесьте к нему снизу. В этом случае продольные балки рамы окажутся ненужными. После сборки станка вся конструкция вцелом сдеформируется (в том числе и ровный поначалу стол) и примет устойчивое положение. Далее вы заряжаете в новый станок фрезу и проходите всю рабочую плоскость стола. Обычно достаточно снять 0,5 мм. Получится стабильный “0” по всей плоскости.
Если возможно, действительно интересно видео Вашего станка в работе.
Не фото.
Сделаю если интересно.
А чем, если не секрет, интересно видио? Увидеть как елозит и услышать как жужжит? 😃
Граф
А чем, если не секрет, интересно видио? Увидеть как елозит и услышать как жужжит?
Все интересно.
Граф
…Все интересно.
Просто народ не верит, что станок существует в природе 😃 Мол, пришёл тут доморощенный гений, и всем вправляет мосх… 😃
Просто народ не верит, что станок существует в природе Мол, пришёл тут доморощенный гений, и всем вправляет мосх…
Неправда! Я Графу верю,наоборот хочу взять ориентир.
2 Jen
“Сегодня в Солиде посчитал деформации для направляющей 980 мм и толщиной 20, 25 и 30 мм при нагрузке 10 кг (100 ньютонов) в центре, получилось примерно 0,2 мм, 0,09 мм и 0,043 мм соответственно. Да, действительно, 20 мм явно мало, лучше всего 30 мм, но 1 метр такой весит 5,5 кг (для 25 мм - 3,8 кг), наверное таки 30 мм будет.”
Неправильно посчитал
у тебя сила в одной точке а надо считать для двух точек
а это уже другая формула + учитывать что две направляющие
для 980 х 25 будет примерно 0,025 (цифра примерная)
Неправильно посчитал
у тебя сила в одной точке а надо считать для двух точек
а это уже другая формула + учитывать что две направляющие
для 980 х 25 будет примерно 0,025 (цифра примерная)
Не, там нагрузка на нирину 150 мм (ширина каретки), а 10 кг это нагрузка на 1 направляющую.
Вот переделал проект, ликвидировал 11 деталей, кажется лучше, какое у вас мнение?
Сделайте ровный крепкий и жесткий рабочий стол (например, в виде толстой плиты, необязательно металлической), а направляющие Х вместе с торцевыми балками подвесьте к нему снизу. В этом случае продольные балки рамы окажутся ненужными. После сборки станка вся конструкция вцелом сдеформируется (в том числе и ровный поначалу стол) и примет устойчивое положение. Далее вы заряжаете в новый станок фрезу и проходите всю рабочую плоскость стола. Обычно достаточно снять 0,5 мм. Получится стабильный “0” по всей плоскости.
Спасибо за совет.
Стол всетаки хочется металлический, деревянный как-то сомнительно…
Вот переделал проект, ликвидировал 11 деталей, кажется лучше, какое у вас мнение?
Растете прямо на глазах. Теперь. Если боковину сделать прямоугольной, а не хитрой формы, цена изготовления еще снизится.
Неправильно посчитал
у тебя сила в одной точке а надо считать для двух точек
а это уже другая формула + учитывать что две направляющие
для 980 х 25 будет примерно 0,025 (цифра примерная)
GOOD, боюсь, что вы тоже не совсем правильно посчитали. Для стержня 980х25 без учета прогиби от собственного веса, при нагрузке 5 кг(49,033Н), максимальная прогибь, даже при жесткой заделке, составит не менее 0,06 мм.(с учетом разноса двух точек 150 мм). Но никак не 0,025
Вопрос расчетов на жесткость принципиален, поэтому извините за то, что пришлось поправить.
С учетом же собственного веса и не жеской заделки для стержня 980х25, максимальная прогибь составит 0,35 мм при нагрузке 5 кг. и 0,59 при нагрузке 10 кг.
Растете прямо на глазах. Теперь. Если боковину сделать прямоугольной, а не хитрой формы, цена изготовления еще снизится.
Я думал над прямоугольной формой, там проблема с закреплением направляющих. Кромоме того меня, как дизайнера такая форма слегка обескураживает.
С учетом же собственного веса и не жеской заделки для стержня 980х25, максимальная прогибь составит 0,35 мм при нагрузке 5 кг. и 0,59 при нагрузке 10 кг.
А та заделка, которая у меня - это жесткая?
Я решил делать 30 мм, правда весить они будут 9 кг вместе.
Jen
Переверните ось Z спереди назад.
Jen
Вам же объяснили - смотрите на конструкцию как на совокупность рычагов
В точке реза будет прикладываться сила - от нее и смотрите
Граф, по Вашему, просто так винт по Y ближе к точке реза опустил?
Если Вы мастер в “Солиде” расчитайте и предоставте уважаемому ALL.
Jen
Переверните ось Z спереди назад.
Боюсь, не совсем понял, получится, то-же что и было раньше, токо в другую сторону.
Jen
Вам же объяснили - смотрите на конструкцию как на совокупность рычагов
В точке реза будет прикладываться сила - от нее и смотрите
Граф, по Вашему, просто так винт по Y ближе к точке реза опустил?
Если Вы мастер в “Солиде” расчитайте и предоставте уважаемому ALL.
Винт Y опускать ниже нельзя, там двигатель и гайку еще крепить как-то надо, в принципе я думал поднять выше верхнюю направляющую, незнаю, стоит-ли.
В Солиде и в механике вообще я не мастер, а был-бы мастер - не спрашивал-бы, а наоборот советы раздавал.
Jen
Я бестолково объяснил.
Имелось ввиду что подвижной будет часть с направляющими и швп с мотором.
Площадку для фрезера на Вашей схеме закрепить к кареткам поперечной оси,а всю конструкцию с направляющими,мотором,винтом сделать подвижной и к ней закрепить фрезер.
Вы получаете ход по всей оси и убираете лишние консоли.
Нарисуйте на своей схеме фрезер с креплением и посмотрите.
Вы получаете ход по всей оси и убираете лишние консоли.
Весьма разумное предложение
Хочется вставить свои пять копеек java script:emoticon(‘😃’, ‘smid_2’)
Насколько помню сопромат, прогиб стержня с жестко заделанными концами меньше, чем со свободными
раз в 8. А в вашей конструкции как раз самая длинная из осей (то есть Х) болтается в воздухе.
Почему бы не сделать сварную раму из профиля с приличным сечением и в неё заделать направляющие?
Насколько помню сопромат, прогиб стержня с жестко заделанными концами меньше, чем со свободными
раз в 8.
В четыре, но целиком и полностью присоединяюсь 😃
Почему бы не сделать сварную раму из профиля с приличным сечением и в неё заделать направляющие?
Я уже говорил, любая конструкция работает благодаря деформациям, т.е. более жесткие элементы гнут (растягивают, сжимают, скручивают и т.д.) под себя менее жесткие. В связи с этим, системы типа «направляющая – каретка» строят или на зазорах, или на деформациях. Если направляющая одна, то проще на зазорах (например, одна направляющая втулка скольжения, другая - вилка). Если направляющих две, то проще на деформациях (жесткая каретка – менее жесткие направляющие). Заметьте, я не говорю - лучше, я говорю – проще.
Предположим, мы захотим сделать две направляющие и каретку одинаковой жесткости при минимальных зазорах. Что получится? Одно из трех: или направляющие разрушат каретку, или каретка разрушит направляющие, или каретку просто намертво заклинит. Придется увеличивать зазоры. В результате, на одном конце направляющих будет все хорошо, а на другом (или в середине, это как повезет) – каретка будет болтаться. Ужесточение допусков формы и расположения поверхностей (прямолинейность, некруглость, параллельность, перпендикулярность и т.п.) приведет к таким затратам, что мало не покажется.
А может пойти другим путем – устроить узлы регулировки и юстировки? Можно. Но надо иметь в виду, что узлы регулировки и юстировки получатся заведомо менее жесткими, чем каретка и направляющие, и мы все равно получим систему, основанную на деформациях.
Конструкция, которую мы обсуждаем, есть конструкция на деформациях в чистом виде - жесткие каретки гнут под себя менее жесткие направляющие. Тут есть и плюсы и минусы.
Плюсы – простота и дешевизна. Нам даже не надо сильно переживать, что направляющие будут не идеально прямолинейные. Настройка проста – сдвигаем каретку на один конец направляющих и фиксируем их, сдвигаем каретку на другой конец и тоже фиксируем. Все. В любом промежуточном положении (например, посередине) жесткая каретка сдеформирует направляющие под себя.
Минусы – трудно рассчитать эти сложные и очень небольшие деформации. Здесь помогает анализ прототипов.
Не надо зацикливаться на прогибе направляющих под весом каретки.
Пусть каретка находится посередине метровых направляющих. Направляющие максимально прогнулись. Вопрос – на сколько надо передвинуть каретку, чтобы прогиб направляющих изменился на 0,05 мм? Можно рассчитать. Пусть это будет 150 мм. Значит, мы просто говорим, что точность станка по Z равна 0,05 мм на площадке 150х150 мм. Я плохо представляю себе хобби применение станка, где мне потребовалась бы такая точность по Z на деталях большего размера. А для раскроя на всей длине мне и вовсе прогиб направляющих Х пофигу.
P.S. Направляющие можно выгнуть дугой вверх на величину максимального прогиба под действием веса каретки Х, это обычная практика.
Одно из трех: или направляющие разрушат каретку, или каретка разрушит направляющие, или каретку просто намертво заклинит.
не согласен.
А может пойти другим путем – устроить узлы регулировки и юстировки? Можно. Но надо иметь в виду, что узлы регулировки и юстировки получатся заведомо менее жесткими, чем каретка и направляющие, и мы все равно получим систему, основанную на деформациях.
Не согласен.
Направляющие можно выгнуть дугой вверх на величину максимального прогиба под действием веса каретки Х, это обычная практика.
Не согласен.
Не надо зацикливаться на прогибе направляющих под весом каретки.
Бог с ним с весом.Вы по умолчанию принимаете нагрузку от инструмента =0! А это не фреза, а бормашина.
Это все возможно при допущении что все кривое,нагрузка на инструмент минимальна,а качество обработки побоку.Геометрия тоже.
Деформации просто нужно учитывать и соотносить с нагрузкой на инструмент.
Все зависит от задачи!!!