Восстановление Гильзы O.S Max 46

Марат
АЛ:

Так вот,японская Enya имеющая некоторое отношение к моделизму,первая среди других производителей изготовила двигатели с АЛЮМИНИЕВОЙ гильзой цилиндра,в качестве упрочняющего покрытия рабочей поверхности её,было использовано никосиловое покрытие

Назвать покрутие никасиловым проще всего… а вот проверить, действительно-ли там никасил не так-то просто. Я написал “по характеру износа” - так как он неравномерен и видно, что в одном месте покрытие стёрлось до основы. Вы видели на “моторизованной садовой технике” с никасиловым покрытием такой износ??? - не поверю никогда!

АЛ:

Попробуйте тогда определить,какое покрытие у этой гильзы

Вопрос похож на вопрос из анекдота… но всё же попробую УГАДАТЬ - судя по цвету покрытия (если оно там вообще есть )- что-то из области напыления карбидом титана - в общем из области покрытий металлорежущего инструмента.

АЛ:

отнюдь не по заоблачной,а по реальной цене

Вам известна себестоимость процесса??? Мне тоже нет - поэтому обсуждать реальность цены не буду…

Вообще-то мы отклонились от темы…

sorry за оффтоп…

АЛ

Не буду интриговать,это гильза двигателя Enya 11FP,производства конца 80х годов.Покрытие имеет никасиловую природу,подтверждено специалистами №хх ящика минприбора СССР.Поршень нам так и не вернули,как оказалось,в нём содержание кремния было около 13%,за это нам сделали новую,чёрную поршневую пару и башку для этого мотора и он ещё долго работал у нас в моделке,в качестве компрессора.Но это дела давно минувших дней.
Что касается нынешних времён,то для общего кругозора,цитата с авто форума:-"
В сети полно инфы этой по теме, например вот:

"Цельноалюминиевые блоки цилиндров появились приблизительно в те же годы. прим.(90е)Технологию их производства отработала немецкая фирма Mahle. Суть идеи заключается в том, что сохраняется пара «железо-алюминий» для поршня и цилиндра, но при условии, что цилиндр выполнен алюминиевым, в то время как алюминиевый поршень гальванически покрыт тонким (0,02- 0,03мм) слоем железа.

Теперь все встало на свои места: поршень в цилиндре не заклинит, зато тепловое расширение цилиндра и поршня практически одинаково. Тогда рабочий зазор не будет «гулять», и его можно сделать очень малым (0,01-0,02 мм), не боясь возникновения задиров и «прихватов». Значит, ресурс деталей повысится, по крайней мере, в 1,5 раза.

Однако то, что в теории просто, на деле оборачивается новыми проблемами. На практике, когда поршневые кольца работают по алюминию, ресурс поршневой группы оказывается невелик вследствие слишком «мягкой» рабочей поверхности цилиндра.

Проблему решили, применив специальную технологию литья блока из алюминиевого сплава с содержанием кремния более 18%. Быстрое охлаждение участков заготовки блока в зоне цилиндров приводит к направленной кристаллизации кремния y зеркала цилиндров. Далее, после механической обработки поверхность цилиндров дополнительно обрабатывают химическим травлением. В результате этой операции кислота, взаимодействуя преимущественно с алюминием, «вымывает» его слой толщиной несколько микрон, оставляя на поверхности лишь кристаллы кремния.

Теперь и поршень, и поршневые кольца будут «работать» не по алюминию, а по твердому кремнию - износостойкость и долговечность этих пар трения гарантирована, причем она заметно выше, чем у обычных чугунных цилиндров. Правда, при этом поршневые кольца, все без исключения, должны иметь твердое хромовое покрытие, поскольку именно этот металл обеспечивает наивысшую износостойкость в паре с кремнием.

Блоки цилиндров, изготовленные с помощью описанной технологии, получили достаточно широкое распространение у немецких производителей автомобилей: это двигатели Mercedes V8 и V12, Audi V8, Porsche L4 и V8, BMW V8 и V12. Та структура материала, которая получена на поверхности цилиндров этих цельноалюминиевых блоков, по терминологии фирмы Mahle называется Silumal. Поршни для таких блоков имеют особое покрытие Ferrostan (фирма Kolbenschmidt, также использующая эту технологию, дает ей другое название - Alusil).

Описанные цельноалюминиевые блоки прекрасно ремонтируются, их можно растачивать и хонинговать в ремонтный размер без всяких ограничений. Правда, при ремонте необходима специальная операция - финишная доводка поверхности цилиндров.

К сожалению, при всех преимуществах пара «Silumal-Ferrostan» (цилиндр-поршень) все-таки не идеальна. В отличие от традиционных чугунных блоков цельноалюминиевые очень «не любят» перегрева и плохой смазки. В таких нештатных условиях на поверхности цилиндров нередко возникают глубокие задиры, практически выводящие двигатель из строя. Это естественная плата за меньшую прочность и твердость алюминиевого сплава по сравнению с чугуном.

Очевидно, чем больше кремния окажется на поверхности цилиндров в цельноалюминиевом блоке, тем выше будут их износостойкость и долговечность. Однако применять на практике технологию направленной кристаллизации довольно трудно и дорого. Фирма Kolbenschmidt предложила другое решение: на стадии изготовления блока в него устанавливаются уже готовые алюминиевые гильзы (технология Locasil). Это позволяет использовать для блока более дешевый алюминиевый сплав и на поверхности цилиндров получить очень высокую концентрацию кремния - до 27%. Хотя отмеченные недостатки цельноалюминиевых блоков сохраняются и здесь.

Поскольку «мягкая» поверхность цилиндров алюминиевого блока уступает чугуну, то почему бы не сделать ее более твердой? То есть нанести настоящее твердое покрытие? Такие блоки цилиндров с твердым покрытием начали применять уже давно. Это покрытие представляет собой слой никеля толщиной 0,1-0,2 мм со сверхтвердыми частицами карбида кремния SiC размером 3 мкм. Разработчик этой технологии фирма Mahle называет это покрытие Nicasil (фирма Kolbenschmidt использует другое название - Galnical).

Первоначально технология Nicasil применялась в 60-70-х годах для блоков цилиндров дорогих эксклюзивных или спортивных автомобилей. Кстати, моторы автомобилей «Формулы-1» имеют аналогичное покрытие на гильзах цилиндров. Но в массовом производстве эта технология начала применяться лишь в начале 90-х (в качестве примера можно привести двигатели М60 и М52 фирмы BMW).

В отличие от цельноалюминиевых блоков покрытие Nicasil не требует каких-либо изменений материала поршней, т.к. по этому покрытию прекрасно работают и обычные алюминиевые поршни. А вот с поршневыми кольцами для этих блоков ситуация сложнее. Традиционные хромированные кольца не подходят: два сверхтвердых материала (хром и Nicasil) плохо сочетаются друг с другом. Поэтому для цилиндров с твердым покрытием рекомендуются другие кольца - например, чугунные фосфатированные без твердого покрытия.

Мотористы, впервые встретившие алюминиевые блоки цилиндров в своей практике, нередко путают их и не могут точно определить, с каким именно блоком - с покрытием или без него - они имеют дело. На самом деле установить тип блока просто: достаточно «царапнуть» острым металлическим предметом по верхнему краю цилиндра. Цельноалюминиевый блок царапается очень легко, причем царапина получается глубокой, поскольку поверхность цилиндра из мягкого алюминиевого сплава. На чугунном цилиндре царапины будут незначительными. И лишь на покрытии Nicasil не останется никакого следа - настолько высока его твердость.

Несмотря на то, что износостойкость покрытия Nicasil существенно превышает аналогичный показатель обычных чугунных блоков цилиндров, некоторые недостатки этой технологии все же надо отметить. Основа блока - алюминиевый сплав - остается относительно «мягким», поэтому при серьезных поломках (обрыв шатуна, прогар и разрушение поршня) тонкое покрытие легко пробивается и уже не может быть восстановлено. Да и в случае естественного износа ремонт, как правило, не предусматривается, т.к. покрытие имеет малую толщину, из-за чего при обработке цилиндра можно легко обнажить алюминий. По этой причине ремонтных поршней для большинства таких блоков «в природе» не существует (лишь для некоторых моторов выпускаются ремонтные комплекты поршневой группы с увеличенным на 0,08-0,10 мм размером).

Но если фирма-производитель не предусматривает технологии ремонта, это вовсе не значит, что изношенный блок нельзя отремонтировать. Скажем больше - алюминиевый блок цилиндров, изготовленный по любой из описанных выше технологий, как правило, подлежит ремонту не только в случае износа цилиндров, но даже при более серьезных повреждениях."
Если вам это интересно,можете посетить любой авто форум,и узнаете много “нового”.Если нужна подробная информация,ищите в тырнете.

Марат:

Вы видели на “моторизованной садовой технике” с никасиловым покрытием такой износ??? - не поверю никогда!

Когда закончились “лихие 90е”,люди которые в те времена напокупали разной техники(бензопилы и пр.),потащили всё это ко мне на ремонт,но я к сожалению не мог им помочь.Так что я с никасилом столкнулся очень плотно в конце 90Х,в начале 2000х.
За сим,считаю тему никасила исчерпанной.
С уважением Алексей.
P.S.Если у вас конкретные сомнения,я готов вам отправить эту гильзу по почте.И пусть ваши специалисты подтвердят,или опровергнут выводы,сделанные специалистами СССР!

Марат

Всё то что вы написали можно прочитать на стенде в главном корпусе фирмы Mahle…
С аллюминиевым блоком от 600-го мерина столкнулся впервые в 1989 году - когда другу привезли размороженный мотор с вопросом - можно что-либо сделать?? Вот тогда и заинтересовался покрытием, которое он имел…

АЛ:

Но если фирма-производитель не предусматривает технологии ремонта, это вовсе не значит, что изношенный блок нельзя отремонтировать. Скажем больше - алюминиевый блок цилиндров, изготовленный по любой из описанных выше технологий, как правило, подлежит ремонту не только в случае износа цилиндров, но даже при более серьезных повреждениях."

Этой фигнёй маются наверно только на территории бывшего СССР…

АЛ:

Так что я с никасилом столкнулся очень плотно в конце 90Х

повторюсь ещё раз - не всё то золото, что блестит!

ДедЮз
АЛ:

Так что я с никасилом столкнулся очень плотно в конце 90Х,в начале 2000х.

Никасилом в СССР с 70-ых годов начали заниматься серьезно и успешно всего 3 фирмы. Разработали технологию химики из Каунаса. Покрывть качественно научились в Серпухове и Мариуполе. В чстности в НИИМОТОПРОМЕ (г.Серпухов) делали очень качественные покрытия. Гильзы для модельных моторов, мне там покрыли в 75 году, но они не пошли по объективным причинам. Технологию я передавал Онуфриенко В. и в АМЛ лабораторию ХАИ, но и там они не пошли. Причина выкалывание участков при эксплуатации на экстремальных режимах из-за соизмеримых размеров толщины покрытия и частей мотора. В дальнейшем похожие покрытия освоили и в сельхозтехнике, но это не НИКОСИЛ по составу. Назвать покрытие можно как угодно, даже “Никосилом”, но оно им не станет. Технология дорогостоящая, специфическая, оправдана в дорогой технике. В частности моторы Ения имеют качественное покрытие, но не никасил. Никасил ТОНЬШЕ 0,1 мм не бывает (после доводки!!!), а после покрытия 0,2-0,3 мм. Плавное истирание, как показано на снимках гильз, тоже не может быть, так, что верно

Марат:

не всё то золото, что блестит!

АЛ

Пригласите кого нибудь,кто на ВАЗе занимался РПД,они вам всё расскажут.Там много тем есть,что бы обсудить покрытия.А я так любитель интересующийся,и профи не являюсь.

ДедЮз:

Плавное истирание, как показано на снимках гильз, тоже не может быть, так, что верно

А гильза вполне рабочая,чуть коцаная,но не смертельно.Поэтому и оставил.Там у поршня,донышко продавило,и бобышка одна под пальцем лопнула… .Последствия эрзац топлива.
С уважением Алексей.

Марат
ДедЮз:

Никасил ТОНЬШЕ 0,1 мм не бывает (после доводки!!!)

Вообще-то на немецких моторах слой толщиной около 0,07мм…

ДедЮз
Марат:

Вообще-то на немецких моторах слой толщиной около 0,07мм…

Для хорошего мастера, плюс-минус трамвайная остановка, значения не имеет.😁
Тоньше, значит лучше, наверное нашли более качественные активаторы процесса и карбид кремния более жестко просепарирован. Кто говорит, что технология дешевая, пусть попробует размерно снять, хотя бы 0,05. Марат, поверьте, я видел эти мучения с настоящим Никасилом (по немецким технологиям), эти же ребята и историю рассказывали. Куча хим добавок, барботажные ванны и т.д. и т.п.
А в сельхозтехнике “эта” покрытия называется “САРМАЙТ”, знаю разработчиков, кричали, что нашли покрытие лучше никасила. Покрывают, довольно износостойко но и трение больше чем у немцев в 2 раза.

Андрей79

А как никасил выглядит относительно твердого хромирования? Трение, износостойкость, простота нанесения ?

ДедЮз
Андрей79:

А как никасил выглядит относительно твердого хромирования? Трение, износостойкость, простота нанесения ?

Трение на 10-15% ниже, по высококремнистым ал. сплавам. Теплопроводность-хуже (бОльшая толщина и карбид). Нанесение-гораздо сложнее, мехобработка тоже. Найду технологическую карту процесса - скину.

Яшин_Н_М
ДедЮз:

Трение на 10-15% ниже, по высококремнистым ал. сплавам. Теплопроводность-хуже (бОльшая толщина и карбид). Нанесение-гораздо сложнее, мехобработка тоже. Найду технологическую карту процесса - скину.

И мне.

ДедЮз

Пока мелко, т.к. по другому не получается. Продолжение (техпроцесс) будет здесь.

ТЕХНОЛОГИЯ:
!!! В начале электролиза частички абразива покоятся на дне ванны. Движение отсутствует. После достижения покрытия в 10 мкм, включается барботаж!!!

  1. Обезжиривание Б-70 или трихлорэтан.
  2. Хим. обезжиривание 3% NaOH 5 мин. при 60 град.Ц.
  3. Помывка в воде (гор. + холод.).
  4. Обработка в растворе кислот (вес. част.) HNO3 - 3; HF - 1; при 18-20 град.Ц. в течение 1 мин.
  5. Промывка в холодной воде.
  6. Обработка в 3% растворе NaOH в течение 5-10 мин. при темп-ре 60 град.Ц.
  7. Промывка в воде.
  8. Обработка в растворе кислот HNO3 - 30; HF - 10; NaF - 1; при 18-20 град.Ц в течении 1 мин.
  9. Промывка в воде.
  10. Нанесение иммерсионного осадка в растворе состава (г/л): цинк фторборатный 5-40; никель 150-250; амоний 40. рН раствора
    2,5…3,5; температура 20 град.Ц. Время выдержки образца 45 сек, затем импульс тока силой 1,5А/дм.кв. в течение 30 сек.
  11. Промывка в воде.
  12. Нанесение медного подслоя в растворе (г/л): пирофосфат калия - 360; оксалат натрия - 18; пирофосфат натрия - 25; карбонат натрия - 20. Температура 40-60 град.Ц; i k=1…1,5 А/дм.кв.; рН=8,5…9. Время 20 минут.
    Продолжение следует.
Марат

И после всех этих операций, никто не даст гарантии, что эффект будет положительный…
На мой взгляд, проще твёрдый хром положить и не париться… и эффект будет намного выше, чем у “никасила” от АСП или им подобных…

taty

Эффект,какого рода? На сколько выше? Хром,подскажите в чем преимущество?

Марат
taty:

Эффект,какого рода?

Ну… хотя-бы увеличение износостойкости!

taty:

На сколько выше?

Покройте, протестируйте и всё станет известно - кто ж на такой вопрос вам ответит-то?

taty:

Хром,подскажите в чем преимущество?

Технология нанесения покрытия проще, предсказуемость результата выше (причём намного), ну и в сравнении с покрытиями, которые якобы “НИКАСИЛ” более высокая износостойкость.

ДедЮз
Марат:

И после всех этих операций, никто не даст гарантии, что эффект будет положительный…

Больше того скажу. Эффект будет отрицательный. Уже писал. Испытывал от 10 до 35 см.куб. Сколов и дефектов покрытия не было, но температурный режим был некудышний, согласовывать КТР-ы не удавалось при работе на рабочих оборотах с продолжительностью более 2-3 минут. Потом “добились” нарушения покрытия и бросили эту затею. Скоро 40-летие этого события. Мои предупреждения озвучены в посту 51.

ПРОДОЛЖЕНИЕ:
13. Тщательная промывка водой. После всех подготовительных операций УБЫЛЬ по толщине около 60 мкм.
14. Никелирование (никасилирование) в электролите следующего состава (Электролит Уоттса с уточненными пропорциями и добавками):
никель сернокислый (гидрат)-280…300 г/л; никель хлористый (гидрат)-45…55; борная кислота-30…35; керамические частицы 1 мкм-100…150; бензолсульфонат натрия-0,8…1,0 г/л. Температура 45…50 град.Ц.; рН=3,3…4,5. Время процесса 7-8 часов.
!!! В ТЕЧЕНИЕ 40 МИН. ЭЛЕКТРООСАЖДЕНИЕ ИДЕТ БЕЗ ПЕРЕМЕШИВАНИЯ (БАРБОТАЖА) ПРИ ТОКЕ=1,5…2А/дм.кв., А ЗАТЕМ ВКЛЮЧИТЬ БАРБОТАЖ И ПОВЫСИТЬ ПЛОТНОСТЬ КАТОДНОГО ТОКА ДО 5…8А/дм.кв. И ВЕСТИ ОСАЖДЕНИЕ ДО ПОЛУЧЕНИЯ ПОКРЫТИЯ НУЖНОЙ ТОЛЩИНЫ.
15. Промывка водой.
16. Механическая обработка покрытия алмазным или эльборовым инстр-том. Доводка - притир чугунный, алмазным порошком.
17. Промывка в ультрозвуковой ванне.

Успеха, желающим помучаться.

P.S. Для желающих сравнивать с твердым хромом. Прикиньте скорости трения и показатели теплопроводности и термостабильности ДВС, где хотите применить покрытие. Теплопроводность НИКАСИЛА никудышняя, насколько, можно проверить хоть на мерседесе. Ке-ра-ми-ка!!!

bob1
ДедЮз:

Трение на 10-15% ниже, по высококремнистым ал. сплавам.

В справочнике по износостойким и антифрикционным покрытиям ( к сожалению, забыл автора) читал, что при хорошей смазке минимальный коэфф трения имеет гладкий твердый хром ( при наличии перерывов в смазке гладкий хром задирается).

Марат
bob1:

( при наличии перерывов в смазке гладкий хром задирается).

Да нет… хром останется без повреждений, а вот поршень задерётся (если вообще речь о модельных моторах)
Что касается справочников -ТАМ ПРИВОДИЛИСЬ СРАВНИТЕЛЬНЫЕ ДАННЫЕ ПО НИКАСИЛУ??? Думаю нет… О чем пишем тогда???

bob1

Интересно, на гильзах спортивных модельных моторов сейчас кто-то применяет никасил или другие новые покрытия?

Марат

На спортивных чего только не применяют… Хромо-ванадий, никель-бор, другие соединения хрома и никеля, но вот насчёт никасила - это вряд-ли.
ДедЮз уже ответил на этот вопрос - если вы не заметили - повторюсь.
Сравните скорость движения поршня при 30-40 тысячах (спортивный модельный мотор) и 8-9 тысяч (мотор автомобиля, где в основном находит применение никасил) соответственно, а теперь сравните насколько больше выделится тепла при такой разнице в оборотах (при других равных условиях). Т.е. это тепло надо отводить, а никасил это практически керамика, у которой теплопроводность стремится к нулю!

Андрей79
Марат:

На спортивных чего только не применяют… Хромо-ванадий, никель-бор, другие соединения хрома и никеля, но вот насчёт никасила - это вряд-ли.
ДедЮз уже ответил на этот вопрос - если вы не заметили - повторюсь.
Сравните скорость движения поршня при 30-40 тысячах (спортивный модельный мотор) и 8-9 тысяч (мотор автомобиля, где в основном находит применение никасил) соответственно, а теперь сравните насколько больше выделится тепла при такой разнице в оборотах (при других равных условиях). Т.е. это тепло надо отводить, а никасил это практически керамика, у которой теплопроводность стремится к нулю!

Не согласен! Возьмите ход поршня 70 мм (двигатель 1,4 - 1,6 литра) умножьте на 2 (туда-сюда) и на 9000 об/мин получаем 1260000 мм/мин или 1260 м/мин
Возьмите ход поршня двигуна 2,5 куба 14 мм, умножьте на 2 и на 40000 об/мин, получаем 1120000 мм/мин или 1120 м/мин!
Это в среднем значении, конечно.
Ну, и какое значение больше?

ДедЮз
Андрей79:

Не согласен!

Действительно “несогласен”, Вы сначала прикиньте теплоотдачу на теплоотводящие элементы. У 2,5 кубиков, на единицу трущейся площади приходится на порядок меньше теплоотводящей конструкции, чем на автомобильных или даже мотоциклетных моторах.
В конструкции больших моторов вносятся системы компенсирующие МИНУСЫ низкой теплопроводности покрытия, в авиамодельных двигателях это, вряд ли уместно. Да и для судомодельных двигателей, пока перспективы для никасила не видно, причина банальная.
Все гоночные моторы БЕЗ КОЛЕЦ, а это значит, что на передний план поставлены свойства КТР, потом уже трение и другие предпочтения. Никасил - замечательное покрытие, но в своей нише. Вы же алмазным надфилем бальзу не обрабатываете.